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Quantum Steerability for Entangled Coherent States
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We study a stronger form of quantum entanglement, i.e. quantum steerability, of entangled coherent states
(ECS). We find that the criterion employing entropic uncertainty relation can reveal quantum steering for ECS
of any size whereas Reid criterion using Heisenberg uncertainty relation scarcely can. The steering behavior of
the state is examined when it is subject to a certain noisy environment. We also show that when asymmetric
decoherence arises—e.g., only one part of bipartite system experiences noise—steering is possible only in one
direction.

I. INTRODUCTION

Quantum entanglement and nonlocality are not only of fun-
damental importance in their own rights but indispensable re-
sources in various quantum information tasks [1, 2]. Quan-
tum steering lies between these two categories of nonlocal
correlations which cannot be explained by any realistic the-
ory. Historically, the notion of steering was introduced in
Schrödinger’s paper [3] which was intended to respond to the
arguments presented by Einstein, Podolsky, and Rosen (EPR)
[4]. In their paper, EPR argued that quantum mechanics lacks
physical reality in its elements and consequently is incom-
plete. Schrödinger later named the variance between classical
and quantum mechanics as Einstein-Podolsky-Rosen (EPR)
paradox [3].

M. Reid first attempted to examine EPR paradox with now
so called steering scenario [5]. She studied the entanglement
of continuous-variable (CV) entangled states as originally dis-
cussed by EPR and came up with a criterion based on inferred
uncertainty relation. Subsequently, there have been experi-
ments to demonstrate steering [6–10]. Wiseman et al. later
clarified that steering can be regarded as an information task
to prove the existence of entanglement between two parties
[11]. Later authors generalized CV Reid criterion to discrete
system [12] and another authors also devised a criterion using
entropy [9].

One of the salient features of steering different from the
notions of entanglement and nonlocality is asymmetry: verifi-
cation of steering depends on an asymmetric model. When it
is required to verify the existence of entanglement or nonlo-
cality of a state, one assumes beforehand the possibility that
it can be described—when measured by local observables of
two parties—by a joint probability of measurement outcomes,
which is determined by a hidden variable. Such joint proba-
bility models are often referred to as quantum separable state
model and local hidden variable model respectively. Like-
wise, in the case of steering, a non-steerable model is pre-
sumed, which can also be addressed by a hidden variable. In
this model, however, one party’s statistical property is differ-
ently assumed from the other while in the former two mod-
els those properties of the two parties are assumed to be of
the same kind—this will be clarified soon. Because of this
asymmetry inherent in the steering model, there has also been
studies on unidirectional steering [13, 14].

In this article, we will consider a certain class of non-
Gaussian CV states, namely, entangled coherent states (ECS).

It is considered one of leading candidates for future quantum
information processing [15]. While its characteristics of en-
tanglement and nonlocality is well studied [16, 17], it is not
yet investigated from the perspective of quantum steering to
our knowledge.

In the ket notation, ECS is written as

|Φ±(α, β)⟩ = N±(α, β)
(|α⟩A |β⟩B ± |−α⟩A |−β⟩B) , (1)

where α and β are assumed to be real and N±(α, β) =(
2 ± 2e−2α2−2β2

)−1/2
is the normalization factor. SinceΦ+ (Φ−)

has only even (odd) sums of number of particles, it is often
referred to even (odd) ECS. Furthermore, when β = α it be-
comes symmetric with respect to each party.

II. REID CRITERION

Wiseman et al. rigorously formulated the concept of steer-
ing as an information task [11] to verify entanglement in the
following scenario. Alice wants to convince Bob that she
sends one part of an entangled state but Bob does not trust
Alice and assumes that there is a some kind of mapping and
ensemble of states which are hidden to him. However, despite
the possibility of Alice’s cheating him, he believes that his
system is described by quantum mechanics and hence consid-
ers so called a local hidden state (LHS) model. In this model,
the joint probability of obtaining measurement outcomes a
and b by the two parties respectively can be written as

P(a, b) =
∑
λ

P(λ)P(a|λ)PQ(b|λ), (2)

where P(λ) is the distribution of a hidden variable λ and the
subscript Q implies that Bob’s part of particles is governed by
quantum mechanics. Although Alice cannot affect the Bob’s
local measurement result

P(b) =
∑

a

P(a, b) =
∑
λ

P(λ)PQ(b|λ) (3)

—otherwise it would violate no-signaling condition—she
might prepare states belonging to a particular ensemble with
probability P(a) =

∑
b P(a, b) by measuring her own state and

obtaining outcome a. However, Bob is suspicious if Alice
would possibly deceive him using her knowledge of a stochas-
tic map P(a|λ) from λ to a which is unknown to Bob. Accord-
ingly the probability of Bob’s getting outcome b conditioned
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on Alice’s outcome a is given by

P(b|a) = P(a, b)/P(a) =
∑
λ

P(λ)P(a|λ)
P(a)

PQ(b|λ). (4)

If Bob fails to find any such map and consequently his mea-
surement result cannot be explained by the above LHS model,
he must admit that the shared state is truly entangled.

One may want to compare this LHS model with the local
hidden variable (LHV) model which can be used to refute a
claim that the shared state are entangled when a third party,
say Charlie, does not trust both Alice and Bob. In this case,
one should assume the following form of joint probability

P(a, b) =
∑
λ

P(λ)P(a|λ)P(b|λ), (5)

which is also described by a hidden variable λ.
As another extreme case, if two parties Alice and Bob are

both trustable, Charlie can request them to falsify the follow-
ing quantum separable state model

P(a, b) =
∑
λ

P(λ)PQ(a|λ)PQ(b|λ) (6)

in order to show the existence of entanglement. It must be
noted that since the probability distribution P(b|λ) without a
subscript is not constrained by quantum statistics it is harder
to falsify Eq. (2) than Eq. (6); by the same reasoning it is
harder to falsify Eq. (5) than Eq. (2). Therefore, the hierarchy
among these three categories of nonlocal correlations follows
as

nonlocality =⇒ steerability =⇒ entanglement.

As can be inferred from this relation, there exist entangled
states that are not steerable and similarly steerable states that
are not nonlocal. Indeed, many examples showing this hierar-
chy have been reported [8, 11, 12, 18].

The original Reid criterion is based on Heisenberg uncer-
tainty relation of conditioned probability distribution func-
tions (PDFs) of position and momentum [5]. Those PDFs of a
generic quantum state ρ can be obtained using wave functions
of a coherent state |α⟩ in terms of quadrature variables x and
p

⟨x|α⟩ = 1
4
√
π

e−
1
2 x2+

√
2αx−α2

, ⟨p|α⟩ = 1
4
√
π

e−
1
2 p2−i

√
2αp. (7)

The position PDF (xPDF), its marginal and conditional PDFs
are easily calculated respectively

P(xA, xB) = ⟨xA, xB| ρ |xA, xB⟩ , (8)

P(xA) =
∫

dxBP(xA, xB), (9)

P(xB|xA) = P(xA, xB)/P(xA), (10)

and the momentum PDFs (pPDFs) are given in the same fash-
ion. Or, alternatively, if the Wigner function of a state is given,
the above PDFs can also be obtained from it

P(xA, xB) =
"

dpAdpBW(xA, pA, xB, pB), (11)

P(pA, pB) =
"

dxAdxBW(xA, pA, xB, pB). (12)

From these PDFs, the inferred variance of, say x, is given
by

∆2
inf(XB|XA) ≡

∫
dxAP(xA) ∆2

inf(XB|XA = xA)

=

∫
dxAP(xA)

∫
dxBP(xB|xA)(xB − mest)2.(13)

Note that the above variance is minimized when mest is the
conditioned mean:

mest = ⟨XB⟩A ≡
∫

dxBP(xB|xA)xB. (14)

The variance ∆2
inf(PB|PA) can be obtained in the same manner.

With these two variances given, Reid inequality (RI) conse-
quently reads

∆inf(XB|XA)∆inf(PB|PA) ≥ 1
2
. (15)

Reid criterion has been successful in some cases such as
Gaussian states, while, on the other hand, it is not always
a sufficiently good criterion; we will see one of these cases
when applying it to ECS.

One can easily get the wave functions of ECSs using Eq.
(7) as

⟨xA, xB |Φ±(α, β)⟩ = N±(α, β)
√
π

[
e−

1
2

(
xA−
√

2α
)2− 1

2

(
xB−
√

2β
)2

±e−
1
2

(
xA+
√

2α
)2− 1

2

(
xB+
√

2β
)2]
, (16)

⟨pA, pB |Φ±(α, β)⟩ = N±(α, β)
√
π

e−α
2−β2[

e−
1
2

(
pA+i

√
2α
)2− 1

2

(
pB+i

√
2β
)2

±e−
1
2

(
pA−i

√
2α
)2− 1

2

(
pB−i

√
2β
)2]
, (17)

and subsequently their joint PDFs as

PΦ± (xA, xB) = | ⟨xA, xB |Φ±(α, β)⟩ |2,
PΦ± (pA, pB) = | ⟨pA, pB |Φ±(α, β)⟩ |2. (18)

The variances ∆inf(XB|XA), ∆inf(PB|PA) for the symmetric
ECSs (β = α), i.e., Φ±(α, α) can be easily evaluated by the
above probabilities and their products are plotted in Fig. 1(a).
One can find that RI (15) is violated only in a narrow and
restricted region for |Φ+(α, α)⟩ while it is never violated for
|Φ−(α, α)⟩. Thus, the violation of RI seems to depend on the
size and parity of ECSs.

It is worth commenting that since Alice’s measurement ob-
servables can be arbitrary ones—when constructing a LHS
model there is no constraint on Alice’s observables—one may
have another form of RI, e.g.,

∆inf(XB|PA)∆inf(PB|XA) ≥ 1
2
, (19)

which, however, does not lead to any violation for ECSs.
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(a)

(b)

FIG. 1. (Color online) (a) The products of inferred uncertainties and
(b) the sum of inferred Shannon entropies of ECSs |Φ±(α, α)⟩ plot-
ted against the magnitude α. In each panel, the two curves represent
the cases of |Φ+(α, α)⟩ (blue solid) and |Φ−(α, α)⟩ (green dashed) re-
spectively, and horizontal (gray solid) lines indicate the correspond-
ing uncertainty bounds. Whereas the violation of RI is confined to a
limited region of amplitude α only for the even parity (|Φ+⟩), ESI is
violated without any restriction on the amplitude and parity.

III. ENTROPIC STEERING CRITERION

As learned in the previous section, RI is not so efficient
as to detect the steerability of non-Gaussian states such as
ECSs. It is because RI depends only on the second order of
observables; it is sufficiently good for a Gaussian state whose
non-classical property depends solely on its second-order mo-
ments of position and momentum whereas it is not the case
for a non-Gaussian state whose properties also depend on its
higher-order moments. Therefore, we will try another steering
inequality by Walborn et al. [9], which is based on entropic
uncertainty relation (EUR) [19]

H(X) + H(P) ≥ ln(eπ), (20)

where

H(X) ≡ H[P(x)] = −
∫

dxP(x) ln P(x) (21)

is the Shannon entropy for xPDF; H(P) is that for pPDF de-
fined in the same manner. Equipped with these entropic mea-
sures of uncertainty other than the variance, the inferred en-
tropy for xPDF can be defined in a similar fashion as the in-
ferred variances are defined,

H(XB|XA) ≡
∫

dxAP(xA)H(XB|xA), (22)

H(XB|xA) ≡ H[P(xB|xA)]

= −
∫

dxBP(xB|xA) ln P(xB|xA), (23)

and H(PB|PA) is defined in a similar way. Here, the condi-
tional probability

P(xB|xA) =
∑
λ

P(λ|xA)P(xB|λ) (24)

is evaluated by Eq. (4) under the assumption of LHS
modeling; here, the probability P(λ|xA) is short for
P(λ)P(xA|λ)/P(xA). Then, applying the concavity of Shannon
entropy to the above convex-sum representation of the condi-
tional probability, we get

H(XB|xA) = H

∑
λ

P(λ|xA)P(xB|λ)


≥
∑
λ

P(λ|xA)H[P(XB|λ)], (25)

and accordingly by Eq. (22)

H(XB|XA) ≥
∑
λ

P(λ)H[P(XB|λ)], (26)

A similar inequality can be obtained for pPDF. Finally, apply-
ing EUR (20) to each hidden state leads to the desired entropic
steering inequality (ESI)

H(XB|XA) + H(PB|PA) ≥ ln(eπ). (27)

We apply this ESI to ECSs and find that the above inequal-
ity is violated by ECSs with any parity—even and odd—and
for any amplitude; see Fig. 1(b). Therefore, one can say that
ESI can fully detect the steerability of ECSs.

Again, one may also consider an observable-crossed form
of ESI as in Eq. (19), e.g.,

H(XB|PA) + H(PB|XA) ≥ ln(eπ). (28)

However, this does not lead to any violation either, hence can
be regarded as useless in this work.

Let us close this section by mentioning the case of apply-
ing ESI to Gaussian states. Since position-momentum EUR
is equivalent to position-momentum HUR for the Gaussian
states, position-momentum ESI also gives the same result as
RI does for Gaussian states.

IV. STEERING UNDER NOISY ENVIRONMENT

When implementing a real experimental setup to detect the
steerability of quantum states, the effect of noisy environment
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is unavoidable, which accordingly degrades the purity—and
presumably also steerability. In order to consider the effect of
mixedness due to noise, we introduce a specific noisy channel,
namely, amplitude damping channel (ADC) under which the
average particle number of a quantum state monotonically de-
creases with time. In the regime of Born-Markov approxima-
tion, zero temperature reservoir is often modeled by ADC and
it causes a quantum state to lose its energy and eventually lead
to the vacuum state. This vacuum-environment decoherence
model is often described by the following master equation

dρ
dτ
= L(â)[ρ] +L(b̂)[ρ], (29)

where τ = (decay rate)×(time) is the dimensionless time and
L(ô)[ρ] is the generic superoperator in the Lindblad form

L(ô)[ρ] = ôρô† − 1
2
ρô†ô − 1

2
ô†ôρ. (30)

From here on, we will refer to Eq. (29) as two-mode ADC to
avoid possible confusion with another decoherence scenario
later. The solution of the above master equation is well known
and can be solved in many ways; here we will particularly
adopt Krauss-opertor technique [20]:

ρ(τ) =
∞∑

n=0

K̂n(â)K̂n(b̂) ρ(0)K̂†n (â)K̂†n (b̂) (31)

with the relevant Krauss operator

K̂n(ô) =
rn

√
n!

tô†ôôn (t = e−τ/2, r =
√

1 − t2). (32)

Note that r =
√

1 − e−τ can be regarded as a normalized time
since r(τ = 0) = 0 and r(τ = ∞) = 1; hereafter, we will use r
instead of τ when plotting entropic functions against time.

Using the singe-mode version of Eq. (31) or Eq. (38) one
can easily find that normalized coherent-state projection sim-
ply transforms under ADC as

|α⟩⟨β|
⟨β|α⟩

ADC−−−→ |tα⟩⟨tβ|⟨tβ|tα⟩ . (33)

Using this formula, one can obtain density matrices of ECSs
suffering ADC

ρECS±(0) = |Φ±(α, β)⟩⟨Φ±(α, β)|
ADC−−−→ ρECS± (τ) = F± |Φ±(tα, tβ)⟩⟨Φ±(tα, tβ)|

+ (1 − F±) |Φ∓(tα, tβ)⟩⟨Φ∓(tα, tβ)| , (34)

where

F± =
[
N±(α, β)
N±(tα, tβ)

]2 1 + e−2r2(α2+β2)

2
. (35)

Notice that as time elapses, ρECS± (τ) eventually approaches
two-mode vacuum state |00⟩AB since F± → (1 ± 1)/2 as τ →
∞. Using these density matrices of ECSs, one can easily get
joint xPDFs

PECS± (xA, xB) = F±PΦ±(xA, xB) + (1 − F±)PΦ∓(xA, xB), (36)

FIG. 2. (Color online) The sum of inferred entropies of xPDF and
pPDF for ECSs plotted against the normalized time r for ⟨n̂(0)⟩ = 4
(blue solid) and ⟨n̂(0)⟩ = 10 (red dashed). The horizontal (gray solid)
line indicates the entropic uncertainty bound ln(eπ). The inset shows
a magnified region where the violation—equivalently steerability—
starts to disappear. See the main text for the detailed violation time
of ESI.

and in the same way pPDFs.
For the case of pure ECS, entropic criterion is shown (in

the previous section) to be better than Reid criterion. We next
study the robustness of the steerability when ECS is subject
to noise. We plot in Fig. 2(a) the sum of inferred entropies
for xPDF and pPDF against the normalized time r. We have
tested the cases that the states have initial average particle
numbers ⟨n̂(0)⟩ = ⟨n̂A(0) + n̂B(0)⟩ = 4 and 10 where n̂A = â†â
and n̂B = b̂†b̂ are the local number operators. Note that only
one parity of ρECS±(τ) is plotted since even and odd ECSs
do not give any appreciable difference for such large ampli-
tudes. The steerability is observed until r reaches 0.42 when
⟨n̂(0)⟩ = 4 while it is until r reaches 0.44 when ⟨n̂(0)⟩ = 10.
Apparently, the larger-size ECS turns out to endure the noise
longer than the smaller-size one. However, as one can see
in the figure, the difference is rather slight and from the per-
spective of detectability, it seems to be the other way around,
i.e., the smaller-size one is better detectable until steering is
possible.

V. ONE-WAY STEERING

Since the steering scenario is born to be asymmetric as
mentioned earlier, there is possibility to steer in one direc-
tion but not in the other. Recently, this feature has been
given attention to by some authors [13, 14] and experimen-
tally demonstrated [14].

In Ref. [14], the authors prepared an entangled state by
beam-splitting a single-mode squeezed state and making only
one (say, Bob’s) mode mixed with the vacuum noise. Using
this asymmetric state, they found a so called one-way steering
condition where Alice can steer Bob’s state but not the other
way around. As a matter of fact, the effect of ADC is equiva-
lent to mixing a given state with vacuum noise through a beam
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FIG. 3. (Color online) The sum of inferred entropies for xPDF and
pPDF of ECS when ⟨n̂(0)⟩ = 4. The solid curves denote the case
when Alice steers Bob’s state (i = B, j = A) and the dashed ones
the other way around (i = A, j = B). The horizontal (gray solid)
lines indicate the corresponding entropic uncertainty bounds. The
term “two-way” means that both Alice and Bob can steer each other’s
state; the term “one-way” in the colored region that Alice can steer
but Bob cannot; finally, “no-way” that no one can steer.

splitter. Thus, by the same asymmetrization method, we can
also test this possibility of one-way steering for ECS: we feed
only one mode of the bipartite system into ADC. Here, we
assume that Bob’s mode undergoes ADC.

In order for Bob’s mode to go under ADC, the relevant mas-
ter equation should change from Eq. (29) to a single-mode
ADC

dρ
dτ
= L(b̂)[ρ]. (37)

Accordingly, its solution also changes from Eq. (31) to

ρ(τ) =
∞∑

n=0

K̂n(b̂) ρ(0)K̂†n (b̂) (38)

with the same Krauss operator as in Eq. (32).
So far, since we have dealt with symmetric states, we need

only to consider the case that Alice steers Bob’s state and that
he examines her ability to steer. Now, if Bob attempts to steer
Alice’s state, she should use Eq. (27) with subscripts A and B
interchanged, i.e., the following ESI

H(XA|XB) + H(PA|PB) ≥ ln(eπ). (39)

Under the single-mode ADC given in Eq. (37), the initially
symmetric ECSs |Φ±(α, α)⟩⟨Φ±(α, α)| evolve now in an asym-
metric fashion as

ρ′ECS±(τ) = F′± |Φ±(α, tα)⟩⟨Φ±(α, tα)|
+
(
1 − F′±

) |Φ∓(α, tα)⟩⟨Φ∓(α, tα)| (40)

with

F′± =
[
N±(α, α)
N±(α, tα)

]2 1 + e−2r2α2

2
. (41)

In the same manner as in the case of two-mode (symmetric)
ADC, we can probe the above ECS by applying now two ESIs
(27) and (39). In Fig. 3(a), we plot the sum of entropies of
ECS of ⟨n̂(0)⟩ = 4 for the two circumstances: Alice steers
Bob and vice versa. It is seen that Alice can steer Bob’s state
until r = 0.68 while he can until r = 0.54. Therefore, one
can say that the colored region (0.54 ≤ r ≤ 0.68) in the figure
indicates one-way steering condition for ECS.

At this point, it is worthy of notice that in one-way steer-
ing scenario a less decohered party (here, Alice) can happen
to steer the other party (Bob) but that the reverse situation—
i.e., more decohered party steer the other—does not happen.
It becomes more convincing from the observation that the di-
rection of one-way steering remains the same as the size of
ECS changes. For instance, for the case of a larger initial size
⟨n̂(0)⟩ = 10, only the steering region of each party extends a
bit more—the steering regions move forward from r = 0.54
to 0.57 for Alice and 0.68 to 0.70 for Bob—but the direction
of steering does not change.

VI. CONCLUDING REMARKS

We investigated the steerability of entangled coherent states
(ECS) which belongs to the class of non-Gaussian continuous
variable entangled state. It is known that Reid criterion which
is based on the inferred version of Heisenberg uncertainty re-
lation well detects the steerability of Gaussian states such as
two-mode squeezed vacuum. We find, however, that it cannot
fully detect the steerability of ECS: it only reveals the steer-
ability of even ECS of limited range of size and never does for
the case of odd ECS. Therefore, we adopted a stronger crite-
rion which is based on inferred entropic uncertainty relation
and found that it can fully detect the steerability of ECSs of
any size and parity. We have also examined the steering be-
havior of ECSs when they are subject to the vacuum noise.
The steering range of time is slightly different depending on
the initial size of ECS. As the concept of steering is asym-
metric by its definition, there can be a possibility of unidirec-
tional steering: one party can steer the other party’s state but
not vice versa. We have examined this one-way steering by
allowing only one party of the state to undergo the vacuum
noise. As a result, we find that there are circumstances that
the non-decohered party can steer the decohered party but not
vice versa. In the case of the vacuum noise, it might be a
general phenomenon for every entangled state, which must be
further investigated thoroughly.
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