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Coherent states of light, and methods for distinguishing between them, are central to all appli-
cations of laser light. We obtain the ultimate quantum limit on the error probability exponent
for discriminating among any M multimode coherent-state waveforms via the quantum Chernoff
exponent in M -ary multi-copy state discrimination. A receiver, i.e., a concrete realization of a
quantum measurement, called the Sequential Waveform Nulling (SWN) receiver, is proposed for
discriminating an arbitrary coherent-state ensemble using only auxiliary coherent-state fields, beam
splitters, and non-number-resolving single photon detectors. An explicit error probability analysis
of the SWN receiver is used to show that it achieves the quantum limit on the error probability
exponent, which is shown to be a factor of four greater than the error probability exponent of an
ideal heterodyne-detection receiver on the same ensemble. We generalize the philosophy of the SWN
receiver, which is itself adapted from some existing coherent-state receivers, and propose a receiver
– the Sequential Testing (ST) receiver– for discriminating n copies of M pure quantum states from
an arbitrary Hilbert space. The ST receiver is shown to achieve the quantum Chernoff exponent
in the limit of a large number of copies, and is remarkable in requiring only local operations and
classical communication (LOCC) to do so. In particular, it performs adaptive copy-by-copy binary
projective measurements. Apart from being of fundamental interest, these results are relevant to
communication, sensing, and imaging systems that use laser light and to photonic implementations
of quantum information processing protocols in general.

I. INTRODUCTION

The task of optimally discriminating between unknown
nonorthogonal quantum states by making appropriate
quantum measurements [1–4] is a fundamental primi-
tive underlying many quantum information processing
tasks, including communication [1], sensing and metrol-
ogy [4, 5], and various cryptographic protocols [6]. The
paradigmatic problem of the so-called quantum detec-
tion theory [1] is to determine the quantum measure-
ment, specified by a mathematical object known as a
positive operator-valued measure (POVM) [4, 7], that
minimizes the average error probability in discriminating
a given ensemble of states. The mathematical solution
to the problem is known in terms of necessary and suf-
ficient conditions that the optimal POVM must satisfy
[8], although for discriminating between more than two
states, the explicit solution of these conditions has been
obtained only in some specific cases [9]. Over the years,
the scope of quantum detection theory has been broad-
ened beyond the above framework to ones such as unam-
biguous state discrimination [10], maximum confidence
discrimination [11], and to specific scenarios of interest
such as multi-copy state discrimination using local oper-
ations and classical communication (LOCC) [12–17], us-
ing a quantum computer with limited entanglement [18],
and in the asymptotic limit of a large number of copies
[19–22].

The case of multi-copy state discrimination under
LOCC and in the asymptotic limit is of particular rel-
evance to this work. For discriminating between n in-
dependent and identical copies drawn from one of two
density operators, the error probability of the optimal
quantum measurement falls off exponentially with n with
a characteristic exponent depending on the pair of states,
known as the quantum Chernoff exponent [19, 20] in
analogy with its classical counterpart [23]. Although the
measurement achieving this optimal scaling behavior is
expected to be a joint one over all the n copies, it turns
out that, in the case of discriminating two pure states,
the scaling and even the exact optimal error probabil-
ity is obtainable using copy-by-copy measurements with
successive measurements depending on previous results,
i.e., using adaptive local measurements [13]. The case of
two mixed states is more complicated and is the subject
of recent research, although it has been shown using ex-
amples of qubits in mixed states that a finite gap exists
between the Chernoff exponent and the best exponent
achievable using LOCC [14–17].

The theory of multi-copy state discrimination was re-
cently extended to M > 2 states in ref. [21], where it
was shown that the error probability scales exponentially
with the number of copies with an exponent not larger
than the smallest of the pairwise Chernoff exponents (in
the sense of refs. [19, 20]) between the states of the
ensemble. Further, for pure state ensembles, a partic-
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ular measurement was shown to achieve this exponent,
so as to make it the exact M -ary Chernoff exponent.
In ref. [22], this achievability result was extended to the
class of linearly independent mixed state ensembles, but
has not yet been established in general.

Our work here was originally motivated by the de-
sign of concrete receivers, i.e., physical realizations of
POVM’s, for discriminating coherent states of light – a
subject with a long history that remains an active area of
research [24–43]. Coherent states of light [44] and their
random mixtures are the most ubiquitous quantum states
of light and their discrimination is central to optical com-
munication [45, 46] and sensing [4, 47] with laser light,
which is in a coherent state to an excellent approxima-
tion. Similar to the situation in multi-copy state discrim-
ination, the optimal error probability of discriminating
an ensemble of coherent states decreases exponentially
with the average energy, i.e., the average number of pho-
tons in the ensemble [1], which is the natural resource
measure for optical systems. This is also true for re-
ceivers that perform the standard direct, homodyne, and
heterodyne detections [45, 46] that correspond to partic-
ular POVM’s and are realizable in the laboratory [48].
However, the exponent of the optimal receiver allowed
by quantum mechanics is in general greater than that of
the conventional measurements [1, 24, 25, 36, 38], leaving
a gap between the optimal error probability (popularly
called the Helstrom limit) and the minimum achievable
by conventional measurements, viz., homodyne, hetero-
dyne, and direct detection (loosely called standard quan-
tum limits).

For discriminating two coherent states, Kennedy pro-
posed a receiver design [24] that is exponentially opti-
mal, i.e., it achieves the maximum error probability ex-
ponent in the high-photon-number regime. Subsequently,
Dolinar proposed a more complicated design that ex-
actly achieves the Helstrom limit for discriminating be-
tween two coherent state signals [25, 26], which was only
recently demonstrated experimentally [27]. Sasaki and
Hirota conceptualized a ‘one-shot’ receiver that could
achieve the Helstrom limit for binary state discrimination
without using the fast electro-optic feedback required by
the Dolinar receiver [28]. However, this design required
unknown nonlinear-optical transformations, which made
it impractical. Takeoka and collaborators showed that
an arbitrary binary projective measurement can be per-
formed on arbitrary quantum-optical states using auxil-
iary coherent fields, linear optics, photon counting and
feedback, thereby generalizing Dolinar’s receiver beyond
coherent states [29, 30]. Receivers with performance
in between the Kennedy and Dolinar receivers were re-
cently proposed [31, 32] for binary coherent state discrim-
ination and experimentally demonstrated [33–35] in the
low-photon-number regime, where the absolute perfor-
mance gap between the Kennedy and Dolinar receivers
is the largest. For M > 2, Dolinar proposed a receiver
for M -ary Pulse Position Modulation (PPM) that is ex-
ponentially optimal [36] and was recently demonstrated

experimentally [37]. Bondurant proposed a receiver for
the 4-ary Phase Shift Keying (QPSK) constellation that
is exponentially optimal [38]. Recently, Becerra and col-
laborators proposed a feedforward receiver structure for
M -ary PSK with arbitrary M and demonstrated that it
closely approximates the Helstrom limit for 4-PSK, in a
partially simulated experiment without real-time switch-
ing of the local oscillator (LO) field [39]. Still more
recently [43], the Becerra group has implemented their
receiver for 4-PSK with real-time switching of the LO
and demonstrated that it beats the standard quantum
limit, i.e., the performance of the ideal heterodyne re-
ceiver, even without adjusting for detection inefficiency
and other realistic limitations for average input photon
numbers in the range of N = 2 − 15. Other receiver
designs continue to be proposed and demonstrated for
particular coherent-state sets [40, 41].
Our contribution in this work is as follows. First, we

use the quantum Chernoff exponent inM -ary multi-copy
state discrimination [21] to obtain the maximum error
probability exponent allowed of a coherent-state receiver
by quantum mechanics. The Kennedy [24], Bondurant
[38], and Becerra [39, 43] receivers rely on a strategy of
attempting to null, i.e., displace to the vacuum state,
the input state by successively subtracting the fields
corresponding to the possible hypotheses. We generalize
this strategy to any multimode M -ary coherent-state set
and propose a receiver for distinguishing between them,
which we call the Sequential Waveform Nulling (SWN)
receiver1. Like its precursors, its operation requires only
auxiliary coherent-state generation, beam splitters and
single photon detection. We then compute the error
probability of the SWN receiver applied to any state set,
and using an upper bound on it, show that the error
probability exponent approaches the maximum allowable
value, establishing the exponential optimality of the
SWN receiver. We also show that the exponent of the
multimode heterodyne receiver is smaller in general than
that of the SWN receiver by a factor of four. Finally,
we adapt the idea of sequential nulling to any M -ary
ensemble of pure states in an arbitrary Hilbert space,
and propose a multi-copy discrimination strategy called

1 A qualification is in order here. Bondurant, in ref. [38], proposed
two receivers for the 4-PSK signal set – his “Type I” and “Type
II” receivers. The Type I receiver nulls hypotheses in a prede-
termined sequence, while the Type II receiver nulls hypotheses
in an order depending on the times that counts were observed,
thereby achieving a slightly improved performance. Similar to
the latter receiver, the Becerra et al. receiver [39, 43] nulls, after
each detection stage, the most probable hypothesis conditioned
on the previous detection data. In contrast, our SWN receiver
nulls hypotheses in an arbitrary but predetermined sequence, and
is therefore more akin to Bondurant’s Type I receiver. However,
our claim of asymptotic optimality is expected to carry over, a
fortiori, to the more optimized strategies of the Becerra et al.
receivers and Bondurant’s Type II receiver. See also ref. [17] for
a discussion of various strategies to optimize local measurements
in the context of binary state discrimination.
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the Sequential Testing (ST) receiver. We show through
an explicit error probability analysis that the ST receiver
attains the M -ary Chernoff exponent for multi-copy
discrimination derived in ref. [21]. Unlike the joint
measurement used in ref. [21], the ST receiver makes
only copy-by-copy binary projective measurements, and
is thus potentially realizable using current technology.

II. COHERENT-STATE DISCRIMINATION –
OPTIMAL ERROR PROBABILITY EXPONENT

Before describing the SWN receiver, we lay down
some notation and definitions. We are given
M quasi-monochromatic complex-valued spatiotemporal
coherent-state waveforms {Em(ρ, t)}Mm=1, where ρ ∈ A
is the transverse spatial coordinate in the receiver aper-
ture plane A and t ∈ T = [0, T ] denotes time within
the signaling interval T . The m-th waveform corre-
sponds to them-th hypotheses to be discriminated2. The
waveforms are given in units of

√
photons/m2/s, can be

completely arbitrary, and correspond to coherent states{
|αm⟩ =

∣∣∣α(1)
m

⟩
⊗ · · ·

∣∣∣α(S)
m

⟩}M

m=1
supported on S ≤ M

orthonormal spatiotemporal modes {ϕs(ρ, t)}Ss=1 that
span the waveform space. The m-th waveform can then
be represented as the point αm ∈ CS in an S-mode phase
space [48]. We define

Em =

∫
A

∫
T
|Em(ρ, t)|2 dρ dt =∥ αm ∥2 (1)

to be the average energy of the m-th waveform in pho-
tons, and

∆m,m′ :=

∫
A

∫
T
|Em(ρ, t)− Em′(ρ, t)|2 dρ dt

= ∥ αm −αm′ ∥2 (2)

to be the energy in the difference of the m-th and m′-th
waveforms. Also define

∆ := min
m,m′:m ̸=m′

∆m,m′ . (3)

If the M hypotheses are distributed according to the
probability distribution {πm}Mm=1, the average energy in
the waveform ensemble, denoted N , is given by

N =
M∑

m=1

πmEm. (4)

2 For simplicity, we assume the waveforms all have the same po-
larization.

The error probability exponent (EPE) ξ# of a coherent-
state receiver #, where # may denote, e.g., the optimal
Helstrom (Hel) receiver, the heterodyne (Het) receiver,
or the SWN receiver, is defined as

ξ# [{αm}] := − lim
N→∞

1

N
lnP#

E

[
{αm}(N)

]
, (5)

where P#
E

[
{αm}(N)

]
is the average error probability of

the receiver # used to discriminate the coherent-state en-
semble {|αm⟩}(N) consisting of waveforms proportional
to the given set of waveforms {αm}Mm=1 but scaled so
as to have average energy N . Note that this definition
is simply the formulation, in the coherent-state context,
of the standard notion of error probability exponents in
classical digital communication, wherein they function as
principal figures of merit for communication systems [49].

Next, we recall the definition of the M -ary quantum
Chernoff exponent (QCE) for multi-copy state discrimi-
nation from ref. [21]. For any ensemble F = {ρm}Mm=1

of states from an arbitrary Hilbert space H, consider the
n-copy ensemble F⊗n = {ρ⊗n

m }Mm=1. The quantum Cher-
noff exponent (QCE) ξQC [F ] of F is defined as

ξQC [F ] := − lim
n→∞

1

n
lnPHel

E

[
F⊗n

]
, (6)

where PHel
E [F⊗n] is the average error probability of the

Helstrom receiver for discriminating the ensemble F⊗n.
For pure-state ensembles F = {|ψm⟩}Mm=1, it was shown
in [21] that

ξQC[F ] = min
m,m′:m ̸=m′

− ln |⟨ψm|ψm′⟩|2 . (7)

For coherent-state ensembles and the Helstrom mea-
surement, these two notions of error probability expo-
nents can be related as follows. The EPE of the Helstrom
measurement on a coherent-state ensemble {αm} is, by
definition,

ξHel[{αm}] : = − lim
N→∞

1

N
lnPHel

E

[
{αm}(N)

]
(8)

= − lim
n→∞

1

n
lnPHel

E

[
{αm}(n)

]
(9)

= − lim
n→∞

1

n
lnPHel

E

[
⊗n{αm}(1)

]
(10)

= ξQC

[
{αm}(1)

]
(11)

= min
m,m′:m̸=m′

− ln
∣∣∣⟨α(1)

m |α(1)
m′ ⟩

∣∣∣2 = ∆/N ≡ κ. (12)

Here, in eq. (9), n is restricted to integer values and the
equality of (8) and (9) follows from the existence of the
limit of eq. (8). Eq. (10) follows because a coherent-state
ensemble can be split into n identical and independent
copies using a unitary beamsplitter transformation and
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FIG. 1. Schematic of a possible implementation of the SWN receiver. The input field is effectively split into L equal-amplitude
“slices”. Each slice is displaced by the negative of one of the scaled hypotheses at the displacement coupler and the local
oscillator (LO) field pattern is switched to match the next hypothesis for the next slice whenever the single photon detector
registers a click. Additional elements necessary to keep the LO amplitude and phase coherent with those of the input are not
shown.

because this action cannot change the error probability of
the Helstrom receiver. We are now in the multi-copy dis-
crimination framework and the left-most term in eq. (12)
follows from eq. (7), and we have used the coherent-

state overlap |⟨αm|αm′⟩|2 = e−∥αm−αm′∥2

and defined
the constant κ that is a function of the prior probability
distribution and the coherent-state ensemble. It is unaf-
fected by scaling all the waveforms of the ensemble by a
common factor.

It is interesting to note that the connection made
between coherent-state discrimination and multi-copy
discrimination via splitting into many identical copies
has also recently been exploited to re-derive the Dolinar
receiver for discriminating two coherent states [50].
Splitting into many identical copies is also a feature
of the receiver proposed in ref. [42] for discriminating
among any M coherent states at the Helstrom limit.
However, this receiver, which builds on the work of
ref. [18], assumes the availability of a quantum computer
and the ability to map single-rail photonic qubits onto
the Hilbert space of the quantum computer, which is a
non-trivial task.

III. SEQUENTIAL WAVEFORM NULLING
RECEIVER

We now describe the operation of the Sequential
Waveform Nulling (SWN) receiver (see Fig. 1). First,
the signal field over A×T is split into L equal-amplitude
portions or slices (where L should be as large as possible
and at least equal to (M − 2) (see below)) that are

placed in storage of some kind, e.g., the fiber loop in
Fig. 1, with a view to access the slices sequentially. The
receiver now operates as follows.

Sequential Waveform Nulling Receiver

1. Initialize the slice number l to l = 1.

2. Initialize the nulled hypothesis µ to µ = 1.

3. While l ≤ L

(a) Displace the l-th slice of the input field by

the field −Eµ(ρ,t)√
L

and direct-detect the output

field in A× T on a single photon detector.

(b) If the detector clicks, set µ := µ+ 1.

(c) l := l + 1.

4. Set the receiver’s decision m̂ := µ.

Before analyzing the receiver’s performance, we com-
ment on why the L-fold amplitude slicing of the sig-
nal is useful. Indeed, a natural way to generalize the
Kennedy [24] and Bondurant [38] receivers is to stipulate
that one displace the input field at (ρ, t) by the nega-
tive of Eµ(ρ, t), where (µ−1) equals the number of clicks
observed in [0, t] (see also the Conditional Pulse Nulling
(CPN) receiver of ref. [51] that follows the same proce-
dure for hypotheses in a single spatial mode). While do-
ing so achieves the optimum exponent for waveforms in
a single temporal mode, there are ternary discrimination
problems with signals in two temporal modes for which,
at the very least, the order in which the hypotheses are
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nulled matters and complicates the performance analy-
sis [52]. This ‘continuous-time’ version of the sequential
nulling strategy will not be discussed further here – we
concentrate on the amplitude-sliced SWN receiver alone.
As we show below, the slicing strategy leads to the SWN
receiver achieving the optimal exponent for an arbitrary
multimode set of hypotheses in the limit of large L.

Slicing also serves a practical purpose. The limitations
on the speed of electro-optic switching of the LO wave-
form, as well as the finite dead time of single photon de-
tectors such as APDs following the detection of a photon
mean that detection cannot continue immediately after a
detector click. If the next slice is held in storage until the
LO waveform and detector are reset, we need not lose the
portion of the input state in this reset period. Indeed,
such a splitting strategy was already employed, albeit
with a different architecture than Fig. 1, in the Becerra
et al. experiment of ref. [39] (Our slices are referred to
therein as “stages”). In their more recent experiment in
ref. [43], amplitude slicing was replaced by the theoret-
ically equivalent strategy – for the flat-top input pulses
used in [43] – of slicing the input pulse temporally into
slices of equal duration.

A. SWN Receiver Performance: Error probability
and optimality of exponent

The error probability analysis of the SWN receiver re-
quires only the semiclassical theory of photodetection
[45, 48]. From the way the receiver operates, it is ap-
parent that when the m-th hypothesis is true, we cannot
get more than m − 1 total clicks over the L slices. Fur-
ther, ifm−1 clicks are observed, we declare correctly that
hypothesis m is true. We thus have for the conditional
probability of error P SWN[E|m] given that hypothesis m
is true

P SWN[E|m]

= Pr [Fewer than m− 1 clicks are observed |m ]

=

m−2∑
K=0

Pr [K clicks are observed |m ], (13)

where the m = 1 case may be included by agreeing that
sums in which the starting value of the summation in-
dex exceeds the ending value are zero. For K > 0, the
summand may be written as follows – the K = 0 case is
dealt with later. Define a length-K vector l = (l1, . . . , lK)
whose k-th component lk is the slice number in the de-
tection of which the k-th click occured. The possible
instances of l are the increasing sequences of K inte-
gers chosen from {1, . . . , L}, and are thus

(
L
K

)
in number.

When the nulled hypothesis is µ < m, the average num-
ber of photons incident on the detector in one slice is
∆µ,m/L. We may then write, using the Poisson nature
of the count in each slice together with the conditional
statistical independence of photodetection in successive

slices:

Pr [K clicks are observed |m ]

=
∑

allowed l

exp

{
−∆1,m

(l1 − 1)

L

}(
1− exp

{
−∆1,m

L

})
×

exp

{
−∆2,m

(l2 − l1 − 1)

L

}(
1− exp

{
−∆2,m

L

})
· · ·

· · · exp
{
−∆2,m

(lK − lK−1 − 1)

L

}(
1− exp

{
−∆K,m

L

})
× exp

{
−∆K+1,m

(L− lK)

L

}
, (14)

where factors of the form exp{·} are probabilities that
no clicks are obtained in the intervals between the click
locations indicated by l while factors of the form (1 −
exp{·}) are probabilites of obtaining a click in the click
locations. We may bound the above expression as

Pr [K clicks are observed |m ]

≤
∑

allowed l

exp

{
−∆1,m

(l1 − 1)

L

}
exp

{
−∆2,m

(l2 − l1 − 1)

L

}
· · · exp

{
−∆K+1,m

(L− lK)

L

}
(15)

≤
∑

allowed l

exp

{
−∆

(l1 − 1)

L

}
exp

{
−∆

(l2 − l1 − 1)

L

}
· · · exp

{
−∆

(L− lK)

L

}
(16)

=

(
L

K

)
exp

{
−∆

(L−K)

L

}
. (17)

For K = 0 and for m > 1, we have
Pr [K clicks are observed |m ] = exp(−∆1,m) ≤
exp(−∆). The upper bound of eq. (17) is there-
fore also valid in this case. For m = 1, we have
P SWN[E|m = 1] = 0. Therefore, keeping to the sum-
mation convention adopted above, we may write, for all
values of m,

P SWN[E|m] ≤
m−2∑
K=0

(
L

K

)
e−∆

(L−K)
L , (18)

so that the total error probability of the SWN receiver
can be bounded from above as

P SWN
E [{αm}] =

M∑
m=1

πmP [E |m]

≤
M∑

m=1

πm

m−2∑
K=0

(
L

K

)
e−∆

(L−K)
L . (19)

A lower bound on the EPE ξSWN [{αm}] of the SWN
receiver can be obtained by inserting the right-hand side
of (19) into (5). Only the term that decays the slowest
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FIG. 2. Coherent-state constellation for quadrature phase-
shift keying.

with ∆ (or equivalently, with N) survives in the limit of
N → ∞, so that

ξSWN [{αm}] ≥ ∆

N

(
1− M − 2

L

)
= κ

(
1− M − 2

L

)
,

=

(
1− M − 2

L

)
ξHel [{αm}] . (20)

As L is increased, this lower bound approaches κ arbi-
trarily closely. Because we must have ξSWN [{αm}] ≤
ξHel [{αm}] by definition of the Helstrom receiver, we
conclude that the EPE of the SWN receiver is at most
a factor of (1− (M − 2)/L) away from the Helstrom re-
ceiver. If L < (M −2), we lack slices to see enough clicks
to ever declare the M -th (and perhaps more hypothe-
ses, depending on how much L falls short of (M − 2))
hypothesis, and ξSWN[{αm}] = 0 On the other hand, in
the limit of L→ ∞, the two exponents must be identical,
establishing the optimality of the SWN receiver exponent
in this limit. For a givenM , L need not be very large for
the EPE to be close to optimal, as seen in the example
below.

B. Comparison with heterodyne exponent

For a coherent-state ensemble {|αm⟩} supported on S
modes, we may in principle heterodyne each of the S
modes to get, conditional on the state |αm⟩, an observa-
tion in CS which equals αm with added Gaussian noise
of variance 1/2 in each of 2S orthogonal quadratures of
the S modes. For this essentially classical situation in-
volving a fixed measurement, it is known that the M -ary
Chernoff exponent equals the worst-case binary Chernoff
exponent between all pairs m and m′ of the hypotheses

[22, 53]. This latter quantity is known to equal d2/8σ2

for two one-dimensional Gaussian distributions with the
same variance σ2 and means separated by d (see, e.g.,
Ch. 2 of [54]), which leads in the heterodyne case to

ξHet [{αm}] = min
m,m′:m ̸=m′

∥ αm −αm′ ∥2

4N
=
κ

4
, (21)

so that the heterodyne EPE is a factor of 4 worse than
the Helstrom EPE regardless of the ensemble {|αm⟩}.

C. QPSK Performance

The performance of various receivers on the single-
mode quadrature phase-shift keyed signal set of Fig. 2
is compared in Fig. 3, with the hypotheses assumed a
priori equally likely. The exponential scaling of all the
receivers is apparent in the straight-line dropoff of the
error probability already evident at rather low photon
numbers of N ∼ 5. The Helstrom measurement (which
in this case implements the square-root measurement
[55]) and the Bondurant receiver [38], which is equivalent
to the L = ∞ version of the SWN receiver, have the
same EPE. The exact error probability of the SWN
receiver and the upper bound of eq. (19), are shown as
the colored solid and dashed lines respectively in Fig. 3
for L = 4, 8 and 12. Note that the difference in slopes
of the L = 12 error probability and the Helstrom error
probability is slight. Finally, the slope of the hetero-
dyne receiver error probability is consistent with eq. (21).

IV. SEQUENTIAL TESTING RECEIVER

The philosophy of the SWN receiver may be applied
back to the scenario of discriminating multiple copies
of pure states of refs. [21, 22]. Abstractly, the nulling
process implements a unitary transformation that maps
the state |αµ⟩ corresponding to the nulled hypothe-
sis to a standard state (namely, the multimode vac-
uum state |0⟩). Detection using a single photon detec-
tor corresponds to measuring the two-outcome POVM
{|0⟩ ⟨0|, I−|0⟩ ⟨0|}. Taken together, these two steps yield
the same statistics, for any input state, as a measurement
of the POVM {|αµ⟩ ⟨αµ|, I − |αµ⟩ ⟨αµ|}. Conditioned
on the outcome, further similar measurements are per-
formed on independent copies of the input state. Note
that we do not use the post-measurement state of any
of these sub-measurements, even if it may be available,
and therefore, the measurements may be destructive (as
is the case for the SWN receiver).
Consider a pure-state ensemble F = {|ψ1⟩ , . . . |ψM ⟩}

of states on an arbitrary Hilbert space H with prior prob-
abilities {πm}Mm=1. For each |ψm⟩ ∈ F , define a binary
projective POVM on H with elements Πm = |ψm⟩ ⟨ψm|
and Π⊥

m = 1 − Πm. The unknown input state |ψm⟩
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FIG. 3. Error probability behavior of various receivers for an ensemble of equally likely quadrature phase-shift-keyed coherent
states as a function of the average ensemble energy. The colored dashed lines are, for L = 4, 8 and 12, the error probability
bound eq. (19), with the corresponding solid lines being the exact error probability (see supplementary material) of the SWN
receiver.

enters the receiver in the n-copy form ⊗n
l=1 |ψm⟩l, where

1 ≤ l ≤ n denotes the copy index. The Sequential
Testing (ST) receiver operates as follows.

Sequential Testing Receiver

1. Initialize the copy index l to l = 1.

2. Initialize the current hypothesis µ to µ = 1.

3. While l ≤ n

(a) Measure {Πµ,Π
⊥
µ } on |ψm⟩l.

(b) If the Π⊥
µ outcome is obtained, set µ := µ+1.

(c) l := l + 1.

4. Set the estimated hypothesis m̂ := µ.

Analogous to the quantum Chernoff exponent defined
in eq. (6), we may define the multi-copy error exponent
ξST[F ] of the ST receiver as

ξST [F ] := − lim
n→∞

1

n
lnP ST

E

[
F⊗n

]
, (22)

where P ST
E [F⊗n] is the average error probability of the

ST receiver for discriminating the ensemble F⊗n.

A. Sequential Testing Receiver: Performance
analysis

We now derive the error probability of the ST receiver,
and via an upper bound on this probability, we establish
that it attains the M -ary quantum Chernoff exponent in
the asymptotic limit.

The performance analysis of the ST receiver follows
largely the same lines as that of the SWN receiver. Be-
cause making the {Πm,Π

⊥
m} measurement on |ψm⟩ can

never lead to a ‘⊥’ outcome, we have

P ST[E|m] = Pr [Fewer than (m− 1) ‘ ⊥ ’ outcomes |m ]

=
m−2∑
K=0

Pr [K ‘ ⊥ ’ outcomes |m ]. (23)

As before, for each K > 0, we define a length-K vector
l = (l1, . . . , lK) whose k-th component lk is the copy
number in the detection of which the k-th ‘⊥’ outcome
occured. The possible instances of l are the increasing
sequences of K integers chosen from {1, . . . , n}, and are
thus

(
n
K

)
in number. We may then write
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Pr [K ‘ ⊥ ’ outcomes |m ] =

=
∑

allowed l

|⟨ψ1|ψm⟩|2(l1−1) ·
[
1− |⟨ψ1|ψm⟩|2

]
· |⟨ψ2|ψm⟩|2(l2−l1−1) ·

[
1− |⟨ψ2|ψm⟩|2

]
· · ·

· · ·
[
1− |⟨ψK |ψm⟩|2

]
· |⟨ψK+1|ψm⟩|2(n−lK)

(24)

≤
∑

allowed l

F (l1−1)
max · F (l2−l1−1)

max · · · F (n−lK)
max (25)

=
∑

allowed l

F (n−K)
max =

(
n

K

)
F (n−K)
max , (26)

where

Fmax = max
m,m′:m ̸=m′

|⟨ψm|ψm′⟩|2 . (27)

The average error probability of the ST receiver can then
be bounded as

P ST
E

[
{|ψm⟩⊗n}

]
=

M∑
m=1

πmP [E |m] ≤
M∑

m=1

πm

m−2∑
K=0

(
n

K

)
F (n−K)
max .

(28)

A lower bound on the Chernoff error exponent ξST of the
ST receiver can be obtained by inserting the right-hand
side of (28) into (22). Factoring out the lowest power of
Fmax on the right-hand side, namely Fn−M+2

max , we have

− 1

n
lnP ST

E

[
{|ψm⟩⊗n}

]
≥ −n−M + 2

n
lnFmax −

1

n
ln

[
M∑

m=1

πm

m−2∑
K=0

(
n

K

)
F (M−K−2)
max

]
(29)

Since πm ≤ 1,
(
n
K

)
≤ nK , and Fmax < 1, we may bound

the argument of the logarithm in the second term as

M∑
m=1

πm

m−2∑
K=0

(
n

K

)
F (M−K−2)
max ≤M2nM−2. (30)

Substituting this back into (29) gives

− 1

n
lnP ST

E

[
{|ψm⟩⊗n}

]
≥

− n−M + 2

n
lnFmax −

lnM2

n
− (M − 2)

lnn

n
. (31)

Taking the limit of n→ ∞, we have

ξST [{|ψm⟩}] ≥ − lnFmax = ξQC [{|ψm⟩}] . (32)

Since ξQC [{|ψm⟩}] is the maximum exponent allowed of
any receiver, we must have

ξST [{|ψm⟩}] = ξQC [{|ψm⟩}] . (33)

V. CONCLUSION

We have described the operation of two practical re-
ceivers, one for general M -ary coherent-state discrimi-
nation, and the other for discriminating among multiple
copies of any ensemble of pure quantum states. The SWN
receiver uses only beam splitters, the ability to engineer
arbitrary coherent-state waveforms, as provided by arbi-
trary optical waveform generators (AOWG’s) and spatial
light modulators (SLM’s), and single photon detection,
as provided by superconducting nanowire single-photon
photodetectors (SNSPD’s), transition edge sensor single
photon detectors (TES’s), or even avalanche photodiodes
(APD’s). Remarkably, this limited toolbox of operations
achieves the optimal error exponent allowed by quantum
mechanics for discriminating coherent-state waveforms.
The non-reliance of the SWN receiver on nonlinear op-
tics transformations makes it a practical possibility for
optical communication over unamplified channels such as
deep-space and satellite communication links, for metrol-
ogy and imaging using laser light, and for coherent-state
cryptographic schemes. In further research, apart from
exploring the various potential applications, it would be
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useful to study the degrading effect of errors in the dis-
placement process arising from imperfect control over the
phase and amplitude of the LO waveforms.

Similar to the SWN receiver, the ST receiver has
many attractive features. Besides attaining the M -ary
quantum Chernoff exponent for pure states (the same
strategy was known to do so for M = 2 [13]), it is
remarkable that it does so using only local operations
and classical communication (LOCC), the previously
known receiver attaining the Chernoff exponent being a
joint measurement in the Gram-Schmidt basis defined
by the multi-copy ensemble [21]. Furthermore, the
measurements on each copy of the input are binary
projective measurements and can be destructive – a
feature that is attractive for photonic implementations.
Such measurements are readily made on polarization-
encoded photonic qubits, as e.g., in the experiments of
ref. [15]. As another example, the required measure-
ments on multi-copy ensembles of displaced squeezed
states [56] can be made using displacement operations,

squeezing, and on-off photodetection. Finally, the work
of ref. [30] implies that any multimode binary projective
measurement on any given multimode optical state of
light and its orthogonal complement can be performed
using auxiliary coherent-state local oscillators, single
photon detection, and classical feedforward. This will
enable an implementation of the ST receiver for general
ensembles of optical states, including nonclassical states
of light. We hope that our work stimulates further
theoretical study of methods for M -ary multi-copy state
discrimination, as well as experimental implementations
of the receivers presented here.
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E. Bagan, Phys. Rev. Lett. 105, 080504 (2010).

[17] B. L. Higgins, A. C. Doherty, S. D. Bartlett, G. J. Pryde,
and H. M. Wiseman, Phys. Rev. A 83, 052314 (2011).

[18] R. Blume-Kohout, S. Croke, and M. Zwolak (2012),
arXiv:1201.6625v1.

[19] M. Nussbaum and A. Szko la, Ann. Stat. 37, 1040 (2009).
[20] K. M. R. Audenaert, J. Calsamiglia, R. Muñoz Tapia,
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