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Verification of photonic families of non-Gaussian entangled states

Ryo Namiki∗
Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

When we consider entanglement verification beyond Gaussian states we may specify a set of non-
Gaussian entangled states which cannot be verified to be inseparable by the measurement of the
covariance matrix. This will specify the set of purely non-Gaussian entanglement whose quantum
correlation cannot be explained by the correlation on the first and/or second order moments of
canonical variables. Here we determine such a set of non-Gaussian entanglement for two classes of
photonic two-mode states generated by using two of familiar Gaussian operations on the products
of number states. We also find a couple of higher order entanglement criteria useful to detect such
non-Gaussian entanglement.

I. INTRODUCTION

Quantum correlation or quantum entanglement plays
a central role in quantum physics and quantum informa-
tion science. A basic problem on quantum entanglement
is the separability problem in which one is asked to de-
termine whether a given quantum state is entangled or
not. For quantum continuous-variable systems or bosonic
modes a major goal of the separability problem was to
determine the inseparability of Gaussian states [1]. It
has turned out that the measurement of the covariance
matrix (CM) is sufficient to detect Gaussian entangle-
ment of a two-mode system [2, 3]. A bit interestingly,
the Gaussian entanglement can be verified by consider-
ing Einstein-Podolsky-Rosen-Like (EPR-like) correlation
[2, 4].

Beyond the measurement of the CM there have been
many proposed entanglement criteria based on the mea-
surements of higher order moments of canonical quadra-
ture variables [5–10]. Generally, entanglement criteria
with higher order moments are thought to be powerful
to detect non-Gaussian entanglement, however, the en-
tanglement criteria based on the CM work whether or not
the state is Gaussian. Thus, it is not clear in what case
of non-Gaussian states we need higher order moments for
entanglement verification. Hence, it would be valuable to
investigate limitations of entanglement criteria with the
lower order moments of the CM and show advantages of
higher order criteria [11–14].

In this report we review the results of Ref. [14] and
some points of Ref. [15]. We consider two classes of non-
Gaussian entangled states generated by the action of the
beamsplitter or the two-mode squeezer on the product of
number states. It is shown that, for many of these states,
the CM is compatible with the CM of separable Gaussian
states and their inseparability cannot be verified by the
measurements of the first and second moments of canoni-
cal variables. We identify a couple of continuous-variable
entanglement criteria with higher order moments [10] to
verify these non-Gaussian entanglement.

∗ Electric address: namiki@qi.mp.es.osaka-u.ac.jp

II. ENTANGLEMENT OF TWO-MODE
GAUSSIAN STATES

We consider two mode bosonic fields described by a
set of canonical variables [x̂A, p̂A] = [x̂B , p̂B ] = i. We

may use the bosonic field operators [â, â†] = [b̂, b̂†] = 1

related to the canonical variables by â = (x̂A + ip̂A)/
√
2

and b̂ = (x̂B + ip̂B)/
√
2. We know that Gaussian

states are basically important class of quantum states
to demonstrate the property of quantum uncertainties
〈Δ2x̂〉〈Δ2p̂〉 ≥ 1/4. They are completely characterized
by the first and second moments of the canonical vari-
ables, and basic properties can be described by the co-
variance matrix (CM). The CM of a two-mode state ρ is
a symmetric 4-by-4 matrix defined by

γρ : = 〈Δd̂Δd̂t + (Δd̂Δd̂t)t〉ρ =:

(
A C
Ct B

)
(1)

where d̂ := (x̂A, p̂A, x̂B , p̂B)
t. In terms of the CM the

physical requirement due to the canonical commutation
relations can be written as γ + iΩ ≥ 0 where

Ω :=

(
J 0
0 J

)
, J :=

(
0 1
−1 0

)
. (2)

In the case of two-mode Gaussian states we can deter-
mine the entanglement of formation by the CM [16]. We
can also determine whether a given two-mode Gaussian
state is entangled or not by using the following Simon’s
separable condition [3]:

D := det γ + 1− detA− detB + 2detC ≥ 0. (3)

This is the necessary and sufficient condition for sepa-
rability of two-mode Gaussian states. For non-Gaussian
states, this is a necessary condition for separability, or
equivalently, violation of Eq. (3) is sufficient to verify
the existence of entanglement.

III. HIGHER ORDER SEPARABLE
CONDITIONS

While Simon’s criterion is useful to analyze entangle-
ment of Gaussian states there are a number of entangle-
ment criteria using the third or higher order moments of
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canonical variables. In this regard a remarkable result
has been presented by Shchukin and Vogel [5]. Let us
define the expectation-value matrix for the products of
field operators:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 〈a〉 〈a†〉 〈b†〉 〈b〉 . . .
〈a†〉 〈a†a〉 〈a†2〉 〈a†b†〉 〈a†b〉 . . .
〈a〉 〈a2〉 〈aa†〉 〈ab†〉 〈ab〉 . . .
〈b〉 〈ab〉 〈a†b〉 〈b†b〉 〈b2〉 . . .
〈b†〉 〈ab†〉 〈a†b†〉 〈b†2〉 〈bb†〉 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

According to Ref. [5], positivity of the determinant of any
principal sub-matrix of M gives a separable condition.
For example, in Ref. [13] a principle sub-matrix is chosen
to give a separable condition of the form:∣∣∣∣ 1 〈ab†〉

〈a†b〉 〈a†ab†b〉
∣∣∣∣ = 〈a†ab†b〉 − 〈ab†〉〈a†b〉 ≥ 0. (4)

This condition also appeared in Eq. (8) of Ref. [7] (See
also Sec. IIIC of Ref. [17]). In this manner we can gen-
erate a huge number of separable conditions by choosing
principle minors from M.

Now we are thought to be in the position to discuss the
role of higher order moments for entanglement detection.
Due to Simon’s condition the measurement of the CM is
sufficient for entanglement verification of the Gaussian
states. One may say that we need the measurement of
higher order moments for verification of non-Gaussian
entanglement. However, Simon’s condition is a necessary
condition for separability and violation of it can signify
the existence of entanglement for non-Gaussian states.
Thus, we know little about the case where measurements
of higher order moments are essential for entanglement
detection. To find a specific role of higher order criteria
we may consider the following two steps (See, Table I):
Firstly, we find a set of the entangled states whose CMs
are incompatible with CM of entangled Gaussian states.
Secondly, we specify the set of higher order entanglement
criteria for these non-Gaussian states. If the two steps
are achieved we can say an advantage of higher order
criteria for detection of non-Gaussian entanglement. In
this research direction we can find a couple of results on
Refs. [11–14].

Here, we employ the concept of the orthogonality/non-
orthogonality to obtain a set of non-Gaussian entangled
states [15]. Suppose that there is a set of Gaussian states.
Then any pair of the elements are non-orthogonal to each
other since Gaussian wave functions have non-zero over-
laps. Conversely, if there is a pair of orthogonal states
at least one of them is non-Gaussian states. Hence, if
we have a set of orthogonal states, at most, one element
is Gaussian and the other elements are non-Gaussian.
On the basis of this fact, if we have an orthonormal ba-
sis consist of entangled states, at most, one element is
Gaussian and we obtain a sequence of non-Gaussian en-
tangled states. Note that, if one find such an entangled
orthonormal basis, another many entangled orthonormal

Entanglement Measurement/Verification

Gaussian 1st&2nd order moments (CM)

Non-Gaussian 1st&2nd order moments (CM)

higher order moments

TABLE I. Some of non-Gaussian entangled states can be ver-
ified to be entangled by the measurement of the covariance
matrix due to the violation of Simon’s condition, i.e, D < 0.
Therefore, to find the role of higher order entanglement crite-
rion, firstly it might be necessary to find a set of non-Gaussian
entangled states which cannot violate Simon’s condition. Sec-
ondary, it is an interesting task to search a set of higher order
entanglement criteria which can verify such non-Gaussian en-
tanglement.

bases can be obtained by using non-Gaussian local uni-
tary operations [15].

IV. ENTANGLED ORTHONORMAL BASIS

The notion of the entangled orthonormal basis might
be a natural element in quantum physics. A two-mode
orthonormal basis can be made by a product of orthonor-
mal bases of single modes. If {|n〉}n is an orthonormal
basis |〈n|n′〉| = δn,n′ then

|n,m〉 = |n〉 ⊗ |m〉 (5)

forms an orthonormal basis on the composite system as
we have |〈n,m|n′,m′〉| = δn,n′δm,m′ . When we apply
a proper interaction unitary U on the product states
we are likely to obtain an entangled orthonormal basis
{U |n,m〉}n,m because correlated pure states are always
entangled.
As a tractable example, we may consider products of

number states and Gaussian unitary operation. For the
product vacuum state |0, 0〉, application of the Gaus-
sian unitary U gives a Gaussian ground state, say |g〉 =
U |0, 0〉. The excited states with non-zero photon |e〉 =
U |n,m〉 are orthogonal to the ground state,

〈g|e〉 = 〈0, 0|U †U |n,m〉 = 〈0, 0|n,m〉 = 0. (6)

Hence, the excited states have non-Gaussian wave func-
tions. For these states calculation of the canonical mo-
ments or an expectation value of other operators can be
routinely done by repeatedly using the basic relations:

a |n〉 = √
n |n− 1〉

a† |n〉 = √
n+ 1 |n+ 1〉 . (7)

In the following, we consider two specific Gaussian uni-
tary interactions illustrated in FIG. 1. One is the two-
mode squeezing operation

Vξ := eξa
†b†−ξ∗ab. (8)

The First International Workshop on Entangled Coherent States and Its Application to Quantum Information Science
— Towards Macroscopic Quantum Communications —

November 26-28, 2012, Tokyo, Japan



Proceedings of the First International Workshop on ECS and Its Application to QIS;T.M.Q.C., 69-76 (2013) 71

The other one is the beam splitter (BS) operation

Ur = era
†b−r∗ab† . (9)

These unitary operators introduce a symmetric pair of
orthonormal bases as in FIG. 2. Note that the interaction
parameters of the unitary operators, transforms as

ξ → ξe−i(φ+ϕ)

r → re−i(φ−ϕ) (10)

under the rotation of local field operators

a → aeiφ

b → beiϕ. (11)

Hence, we can choose the phases of the interaction pa-
rameters provided that the local Gaussian unitary oper-
ators can be optimized.

FIG. 1. Two families of photonic non-Gaussian entangled
states are generated by the two-mode squeezing operation (a)
or the beam-splitter operation (b) on the product of number
states. They are respectively parameterized by the interaction
parameter ξ or r.

A. Two-mode squeezed number states

The states |M,N ; ξ〉 generated by the application of

two-mode squeezer unitary Vξ = eξa
†b†−ξ∗ab on the

product of number states |M,N〉 are called two-mode
squeezed (TMS) number states. By introducing the cou-
pled field operators

Âξ := VξaV
†
ξ =

a− ξb†√
1− |ξ|2 ,

B̂ξ := VξbV
†
ξ =

b− ξa†√
1− |ξ|2 , (12)

we can write

|M,N ; ξ〉 = (Â†
ξ)

M

√
M !

(B̂†
ξ)

N

√
N !

|ψξ〉 (13)

where

|ψξ〉AB := Vξ |0, 0〉 =
√
1− |ξ|2

∞∑
n=0

ξn|n〉A|n〉B , (14)

is the well-known TMS vacuum state. The TMS number
states are entangled whenever the interaction parameter
ξ is non-zero [15]. From the construction, we have the
orthonormal relation 〈M ′, N ′; ξ|M,N ; ξ〉 = δN,N ′δM,M ′

and the wave function of |M,N ; ξ〉 is non-Gaussian ex-
cept for M = N = 0.
Since the two-mode squeezing operation can be ex-

panded in the terms of the pair of annihilation operators
ab and the pair of creation operators a†b† it preserves rel-
ative photon number of the two local modes Na := a†a
and Nb := b†b. This implies that a TMS number state
can be written in coherent superposition of the product
of the number basis with a fixed relative photon number
as

|M,N ; ξ〉 =
∞∑

m=−min{M,N}
Cm|M +m〉A|N +m〉B .

(15)

Therefore, the TMS number state |M,N ; ξ〉 is an eigen-
state of the relative photon number Na − Nb belong to
the eigenvalue of M−N . An explicit form of the Schmidt
coefficients of the TMS number state {Cm} can be found
in Refs. [15, 18]. We note that the Schmidt rank of the
TMS number states is infinite.
It is a simple exercise to determine the CM of the TMS

number state. The four determinants of |M,N ; ξ〉 are
calculated to be

det γ = (1 + 2N2)(1 + 2M2),

detA =
(1 + 2M + (1 + 2N)|ξ|2)2

(1− |ξ|2)2 ,

detB =
(1 + 2N + (1 + 2M)|ξ|2)2

(1− |ξ|2)2 ,

detC = −4(1 +M +N)2|ξ|2
(1− |ξ|2)2 . (16)

This implies the violation of Simon’s separable condition
when(

M − |ξ|2
1− |ξ|2

)(
N − |ξ|2

1− |ξ|2
)

<
|ξ|2

(1− |ξ|2)2 . (17)

This inequality can be associated with an inverse propor-
tional curve as shown in FIG. 3. Above this curve the
TMS number states have the CMs being compatible with
the CMs of separable Gaussian states. Hence, we can see
that a large part of the TMS number states cannot be
determined to be entangled by Simon’s condition. This
shows a limitation of the measurement of the CM and a
potential advantage of measuring higher order moments
for entanglement detection.

Role of Duan’s sum condition

It might be instructive to test the sum criterion based
on the EPR-like uncertainties given by Duan et al. [2]
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FIG. 2. Dual properties of the two orthonormal bases.

(See also, [4, 12, 15]). In our notation, the sum criterion
for separable states can be written as [15]

{
2
(
〈Â†

ζÂζ〉 − 〈Â†
ζ〉〈Âζ〉

)
+ 1

}
≥ 1 + ζ2

1− ζ2
. (18)

Until the end of this section we assume 0 < ζ, ξ < 1 for
simplicity.

Using the following relation

Â†
ζÂζ = a†a+ ζ2b†b− ζ(a†b† + ab)/(1− ζ2)

=
1

1− ζ2
1

1− ξ2
{
(1− ζξ)2Â†

ξÂξ + (ξ − ζ)2 ×

(B̂†
ξB̂ξ + 1) + (1− ζξ)(ξ − ζ)(ÂξB̂ξ + Â†

ξB̂
†
ξ)
}

we have the mean value of Â†
ζÂζ for the TMS number

state |M,N ; ξ〉 as

〈Â†
ζÂζ〉 = 1

1− ζ2
1

1− ξ2
{
(1− ζξ)2M + (ξ − ζ)2N

}
.

From this relation the separable condition of Eq. (18) for
the TMS number state |M,N ; ξ〉 is shown to be violated
when

(1− ζξ)2M + (ξ − ζ)2N < ζ2(1− ξ2). (19)

This condition gives a line tangent to the boundary of
Eq. (17). The regime determined by Eq. (17) can be
also determined when we vary the parameter ζ of Eq.
(18) as shown in FIG. 3.

To demonstrate this, let us consider two tangent lines

(1− ζξ)2M + (ξ − ζ)2N = ζ2(1− ξ2)

(1− ζ ′ξ)2M + (ξ − ζ ′)2N = ζ ′2(1− ξ2). (20)

The intersection of this two lines specifies a point on the
boundary in the limit of ζ ′ → ζ. It is given by

M =
ζξ

1− ζξ

N =
ξ

ζ − ξ
. (21)

By eliminating the parameter ζ from this expression we
obtain the boundary curve(

M − |ξ|2
1− |ξ|2

)(
N − |ξ|2

1− |ξ|2
)

=
|ξ|2

(1− |ξ|2)2 . (22)

Hence, the detectable set of the TMS number states for
Duan’s criterion is the same as the set for Simon’s cri-
terion. In this regard, we observe no essential difference
in entanglement detection of the TMS number states be-
tween Simon’s criterion and Duan’s criterion.

B. Beam-splitted number states

Similar to the case of TMS number states we may de-
fine beamsplitted (BS) number states by application of
Ur of Eq. (9) on the product of number states as [14]

|n,m; r〉 := Ur|n,m〉 = (c†r)
n

√
n!

(d†r)
m

√
m!

|0, 0〉, (23)

where

cr := UraU
†
r =

a− rb√
1 + |r|2 , dr := UrbU

†
r =

r∗a+ b√
1 + |r|2 .

(24)
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FIG. 3. A pair of non-negative integers M and N can be
assigned for a TMS number state |M,N ; ξ〉 of Eq. (13). Be-
low the inverse proportional curve, the TMS number states
have the covariance matrices being compatible to the covari-
ance matrices of the entangled Gaussian states, and can be
confirmed to be entangled from the measurements of the co-
variance matrix. Here, we displayed the case of ξ = 0.7 in Eq.
(17). The tangent lines are due to the sum condition of Eq.
(19) with ζ = 0.72, 0.87, 0.91, 0.95, and 0.999. A line nearly
parallel to the vertical N -axis can be obtained by replacing
the role of M and N in Eq. (19).

Its inseparability can be proven from the theorem for
beam-splitter entangler [19] (see also [20]). We assume
that the interaction is non zero r �= 0 or different from the
complete swapping operation r �= ∞. Note that, in the
case of n = m = 0, the BS number state is the product
of vacuum states and separable. Since the beamsplitter
operation Ur can be expanded in the terms of the anni-
hilation and creation pairs of each mode, ab† and a†b, it
preserves the total photon number Na+Nb. This implies
that a BS number state can be written in the superpo-
sition of the number-state products with a fixed total
photon number as

|m,n; r〉 =
m+n∑
k=0

C ′
m|n+m− k〉A|k〉B . (25)

It tell us that the BS number state is an eigenstate of the
total photon number Na+Nb belong to the eigenvalue of
m+ n. The number of non-zero Schmidt coefficients for
|m,n; ξ〉 is at most m + n + 1, and the Schmidt rank of
the BS number state is finite in contrast to TMS number
states. Such a dual property on TMS number states and
BS number states is summarized in FIG. 2.

It is a simple exercise to determine the CM γ of Eq.
(1) for the BS number state [14]. We can obtain the

expression of the four determinants

det γ = (1 + 2n2)(1 + 2m2),

detA =
(1 + 2n+ (1 + 2m)|r|2)2

(1 + |r|2)2 ,

detB =
(1 + 2m+ (1 + 2n)|r|2)2

(1 + |r|2)2 ,

detC =
4(m− n)2|r|2
(1 + |r|2)2 . (26)

This implies that there is no violation of Simon’s condi-
tion Eq. (3) for the BS number states although they are
thought to be full of entanglement.
Note that two-mode Gaussian entanglement can be as-

sociated with the existence of a stronger EPR-like corre-
lation as described in Ref. [4]. In this regard, the insensi-
tivity to Simon’s criterion suggests that the states exhibit
no EPR-like correlation. Then, it is natural to ask what
types of correlation or state properties are relevant to
such non-Gaussian entanglement. We will address this
point in next section. In the rest of this section we intro-
duce a simple higher order criterion which is sensitive to
a set of the BS number states.

An advantage of the condition by Hillery and Zubairy [7]

It might be interesting that a relation similar to Eq.
(17) can be derived for the BS number states when we use
the separable condition of Eq. (4). For the BS number
states of Eq. (23) we have

〈a†ab†b〉 =
(

1

1 + |r|2
)2 {

(1− |r|2)2mn

+|r|2[m(m− 1) + n(n− 1)]
}
,

〈ab†〉 = r

1 + |r|2 (m− n). (27)

Then, the violation of the separable condition of Eq. (4)
turns out to be(

m− |r|2
1 + |r|4

)(
n− |r|2

1 + |r|4
)

<

( |r|2
1 + |r|4

)2

.(28)

This inequality is quite similar to the inequality of Eq.
(17). The condition of Eq. (28) can verify entan-
glement for the cases of (m,n) = {(k, 0), (0, k)} with
k = 1, 2, 3, · · · . This is an advantage of the measure-
ments of higher order moments for detection of purely
non-Gaussian entanglement although it covers a small
portion of the BS number states.

V. VERIFICATION OF NON-GAUSSIAN
ENTANGLEMENT

In the previous sections we have tested Simon’s condi-
tion for two set of non-Gaussian states and identified the

The First International Workshop on Entangled Coherent States and Its Application to Quantum Information Science
— Towards Macroscopic Quantum Communications —

November 26-28, 2012, Tokyo, Japan



74 Ryo Namiki

entangled states whose CMs are compatible with separa-
ble Gaussian states. Now we will identify a set of higher
order criteria that can verify the inseparability of these
non-Gaussian entangled states.

We consider two separable conditions related to the
generators of SU(2) and SU(1,1) algebra [6–10, 14, 21,
22], [

〈Δ2(Jy)〉+ 1

4

]
〈Δ2Kz〉 ≥ 1

4
|〈Jx〉|2, (29)

[
〈Δ2(Ky)〉 − 1

4

]
〈Δ2Jz〉 ≥ 1

4
|〈Kx〉|2, (30)

where the generators of SU(2) and SU(1,1) algebra are
defined as

Jx =
1

2
(a†b+ ab†), Kx =

1

2
(a†b† + ab),

Jy =
1

2i
(a†b− ab†), Ky =

1

2i
(a†b† − ab),

Jz =
1

2
(Na −Nb), Kz =

1

2
(Na +Nb + 1). (31)

In the final line we use the notation for local photon-
number operators Na = a†a and Nb = b†b. Note
that Jy and Ky are thought to be the Hamiltonians of
a beam-splitter and a two-mode Squeezer, respectively.
The separable conditions Eqs. (29) and (30) can be
derived by taking partial transposition on the spin-like
uncertainty relations 〈Δ2Ky〉〈Δ2Kz〉 ≥ 1

4 |〈Kx〉|2 and

〈Δ2Jy〉〈Δ2Jz〉 ≥ 1
4 |〈Jx〉|2 (See, e.g., [10, 14]). We next

show that TMS number states violate the first inequality
of Eq. (29) and that a large part of BS number states
violates the second inequality of Eq. (30).

The TMS number states are eigenstates of the relative
photon number Na−Nb and so are the eigenstates of Jz.
This implies that uncertainty of Jz is zero and the term
in the LHS of Eq. (29) vanishes for the TMS number
states. When we calculate the term in the RHS of Eq.
(29) for the TMS number states, we can check that it
is positive for any N and M . Consequently, this higher
order criterion can verify the inseparability of any TMS
number state. This shows a clear advantage of the higher
order criterion compared with the criterion based on the
CM.

Similar relation can be found between the BS number
states and the inequality of Eq. (30). The BS number
states are eigenstates of the total photon number Na+Nb

and so are the eigenstates of Kx. This implies the uncer-
tainty of Kx is zero and the LHS of Eq. (30) vanishes for
the BS number states. When we calculate the term in the
RHS of Eq. (30) for the BS number states, we can check
that it is positive whenever n �= m. Consequently, this
higher order criterion verifies the inseparability of the BS
number states except for the small potion of n = m. Be-
fore to discuss the case of m = n in detail we would like
to mention the mechanism of the present entanglement
detection.

The mechanism that the non-Gaussian entangled
states violate the higher order separable conditions can

be summarized as follows (See FIG. 4). On one hand, the
terms 〈Δ2Kz〉 and 〈Δ2Jz〉 in the LHSs of Eqs. (29) and
(30) correspond to the fluctuations of sum or difference
of the local photon number operators. Thereby, they be-
come smaller as the classical correlations on the photon
numbers become stronger. On the other hand, the terms
〈Jx〉 and 〈Kx〉 in the RHSs of Eqs. (29) and (30) show
coherence between the product of number states. More
precisely, the Jx operator contributes to the coherent ex-
change of a single photon between the local modes due to
the operators ab† and a†b; The Kx operator contributes
to the coherent pair creation or pair annihilation of the
photons due to the operators a†b† and ab. Such coher-
ent superpositions on the number basis can be generated
by the beamsplitter unitary and the two-mode squeezing
unitary, respectively. In the present case, the states are
keeping the coherence and the classical correlation simul-
taneously, and this is the key mechanism of the entan-
glement verification. Interestingly, it still shows a simple
physics beyond the Gaussian paradigm. The new mech-
anism covers a part of entangled states which have no
EPR correlation, and it might be an interesting task to
identify whole class of non-Gaussian entanglement rele-
vant to this type of entanglement verification. On the
other hand, it might be also interesting to identify to
what extent this mechanism is useful to detect Gaussian
entanglement.
Now we go back to the case of the BS number states

with n = m. We can show that they violate another
higher order separable condition proposed in Ref. [10]
(See also [4]):

[
〈Δ2(L̃y)〉+ 〈N22〉

]
〈Δ2N+〉 ≥ 1

4
|〈L̃x〉|2, (32)

where

N22 =
1

4
[a2, (a†)2]⊗ [b2, (b†)2], N+ =

1

4
(Na +Nb),

L̃x =
1

2
[(a†b)2 + (ab†)2], L̃y =

1

2i
[(a†b)2 − (ab†)2].

(33)

Since N+ is proportional to the total photon number op-
erator its fluctuation is zero for BS number states. Simi-
lar to the case of Eq. (30), the LHS of Eq. (32) vanishes
for BS number states. For the RHS term of Eq. (32) we
have

〈L̃x〉 = r2 + (r∗)2

2(1 + |r|2)2 [m(m− 1) + n(n− 1)− 4nm].

(34)

When we set n = m it implies

|〈L̃x〉| = |r2 + (r∗)2|
(1 + |r|2)2 n(n+ 1). (35)

This concludes that the BS number states with n = m >
0 violate the separable condition Eq. (32). The mecha-
nism of the violation of Eq. (32) can also be associated
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FIG. 4. Smaller fluctuations ΔJz ∼ 0 and ΔKz ∼ 0 imply stronger photon number correlation whereas non-zero contributions
of Jx and Kx imply coherence between the number basis of the same total photon number or the same difference photon
number, respectively. The coexistence of strong classical correlation and the coherence induces the violation of the separable
conditions and signifies the existence of entanglement.

FIG. 5. Distribution of (m,n) that satisfies Eq. (36). There are 12 solutions for 0 ≤ m < n ≤ 107: (0,1), (1,5), (5, 20), (20, 76),
(76, 285), (285, 1065), (1065, 3976), (3976, 14840), (4840, 55385), (55385, 206701), (206701, 771420), and (771420, 2878980).
The solutions (m,n) = {(0, 1), (1, 0)} are not displayed in this figure.
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with the coexistence of the coherence and the classical
correlation. In this case the L̃x operator can be related
to the coherence between the processes of the two photon
exchange due to the terms (ab†)2 and (a†b)2.

Note that there is a very small portion of the BS num-
ber states which cannot violate the separable condition
Eq. (32). Those states can be specified by 〈L̃x〉 = 0 in
Eq. (34), namely, they are determined by

m(m− 1) + n(n− 1)− 4nm = 0. (36)

This equation is independent of the interaction parame-
ter r, and the solutions are thought to specify a general
property on the BS number states. A set of solutions of
this equation is shown in FIG. 5. In the Logarithm scale,
they seem to be distributed with a regular interval, and
the number of states are fairly said to be very small.

VI. SUMMARY

We have introduced the notion of entangled orthonor-
mal basis to discuss the role of higher order moments
of canonical operators for entanglement detection. We
have considered two examples of entangled orthonormal
bases which can be generated by using Gaussian inter-
actions for products of number states. We have tested
Simon’s criteria and shown limitations of entanglement
verification scheme based on the covariance matrix. We
have also found a couple of higher order separable condi-

tions which have advantage on verification of those non-
Gaussian entanglement. The mechanism of entanglement
detection are addressed to be the coexistence of the co-
herence and classical correlation. This mechanism is dif-
ferent from the mechanism of the entanglement detection
for Gaussian states where an EPR-like correlation plays
a key role. It is an open question to further identify the
interrelation between the mechanisms.
Finally, the following points could be emphasized: We

can go beyond the Gaussian paradigm of entanglement
detection by a combination of basic elements of quan-
tum optics, such as beamsplitter, two-mode squeezer,
and number states. Interestingly, we can still enjoy a
simple physics of entanglement detection over there. Ex-
perimental generation of number states and implementa-
tion of Gaussian unitary gates are essential technology in
quantum optics and photonic quantum information sci-
ence. Hence, experimental generation and observation of
the states belong to the entangled orthonormal bases are
thought to form an attractive field to demonstrate the
feasibility of the experimental methods.
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