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Use of entangled coherent states in quantum teleportation and entanglement diversion

Ranjana Prakash∗

Physics Department, University of Allahabad, Allahabad-211002, India

Van Enk and Hirota [S J Van Enk, and O Hirota, Phys. Rev. A 64, 022313 (2001)] showed that
standard quantum teleportation of one qubit of information encoded in a single mode superposition
of coherent states | ± α⟩ is possible using resource of a two mode entangled coherent state (ECS)
with success equal to 1/2. Also, Wang considered [X Wang, Phys. Rev. A 64, 022302 (2001)]
teleportation of a single qubit encoded on bipartite SCS using three-partite ECS and reported
success of 1/2. I present here the work done in collaboration with Hari Prakash, Naresh Chandra
and Shivani, modifying the van Enk Hirota scheme so as to obtain teleportation with near perfect
success and fidelity. I also present our work on controlled quantum teleportation using four-partite
entangled state.

If Alice is connected to Bob and also to Charlie with shared bipartite ECS’s, she can communicate
with Bob and Charlie but Bob and Charlie cannot communicate with each other. I discuss our
work on a near perfect scheme generating entanglement of the qubits with Bob and Charlie, called
entanglement diversion, and show how it can be achieved with almost perfect fidelity and success.

In this talk I propose to share some of the work done
in collaboration with Prof. Hari Prakash, Prof. Naresh
Chandra and Dr. Shivani A. Kumar on use of entangled
coherent states in quantum teleportation and entangle-
ment diversion.

In classical information theory, unit of classical infor-
mation is a bit (values 0 and 1) which describe state
of a classical two level system and classical information
consists of a string of bits (0’s and 1’s). In quantum me-
chanics, however, a two-level system can exist not only in
states |0⟩ and |1⟩ but also in an infinity of superposition
states |ψ⟩ = a|0⟩+b|1⟩, where a and b are arbitrary com-
plex numbers which satisfy the normalization condition,
⟨ψ|ψ⟩ = |a|2 + |b|2 = 1. Without reducing generality we
can take a real and write a = cos θ

2 , b = sin θ
2 e

ϕ, where
the angles θ, ϕ are in the ranges 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π.
Obviously these ranges associate a direction with each
value of (θ, ϕ). Bloch sphere is the name given to a
unit sphere, the point (1, θ, ϕ) on which represents the
state |ψ⟩ = cos θ

2 |0⟩ + sin θ
2 e

ϕ|1⟩. Unit of information
in quantum information theory is a qubit represented by
the above-given general state |ψ⟩. For 3, 4 and in gen-
eral d dimensional states, we define the units of quantum
information Qutrit, Ququat and Qudit.

A two qubit pure state may, in special cases, be fac-
torizable, e.g., |ψ⟩ = |ψ1⟩1 ⊗ |ψ2⟩2. If it is not so it
is called entangled. A mixed two qubit state can al-
ways be expressed by a density operator of the form,
ρ =

∑
i ρi|ψi⟩⟨ψi|, where ρi ≥ 0. If all states |ψi⟩ are

factorizable, the state is called separable. If the state is
not separable it is called entangled.

Entanglement is quantified and is described by param-
eters, entanglement of formation, concurrence, negativ-
ity, quantum discord, three tangle and partial tangle. We
shall however use only concurrence. For a pure state
|ψ⟩, entanglement is defined by C(|ψ⟩) = |⟨ψ|ψ̃⟩|, |ψ̃⟩ =
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σy ⊗ σy|ψ∗⟩. For a mixed state described by density op-
erator ρ, one defines ρ̃ = σy ⊗σyρ

∗σy ⊗σy. If λ1,2,3,4 are
positive square roots of eigenvalues of ρρ̃, concurrence is
given by C(ρ) = max(0, λ1 − λ2 − λ3 − λ4).
Quantum Teleportation (QT) is an important quan-

tum information process where a quantum state of a sys-
tem is transferred on to another similar system at a dis-
tance without sending directly any part of the system or
of the information about the system. The first protocol
for QT was given by Bennett et al [1], for sending one
qubit information which is quantum state |I⟩ = a|0⟩+b|1⟩
of some particle from a sender, say, Alice, to a receiver,
say, Bob. Two entangled qubits are shared between Alice
and Bob, Alice performs Bell State Measurement (BSM)
on the two qubits with her and conveys her result to Bob
through a classical channel. Bob then performs a unitary
transformation on his qubit dependent on the informa-
tion he receives from Alice and Bob’s qubit assumes the
original quantum state of the Alice’s information qubit.
Original information is destroyed at Alice’s end when the
BSM is done. Experimental demonstration of Teleporta-
tion of polarized single photon state has been done using
standard bi-photonic entangled states [2]. Linear optics,
however, does not enable complete BSM.
Van Enk and Hirota proposed [3] a scheme for tele-

porting superposed coherent states (SCS) using entan-
gled coherent states (ECS). This had the advantage over
QT using standard bi-photonic entangled states in that
the ECS are more robust against decoherence due to pho-
ton absorption than the standard bi-photonic entangled
states [4].
Coherent states are the eigenstates of the annihilation

operator a, with complex eigenvalue α, given by

|α⟩ = e−2|α|2
∞∑

n=0

αn

√
n!
|n⟩, (1)

and they have the properties

⟨α|β⟩ = eα
∗β− 1

2 (|α|
2+|β|2), π−1

∫
d2α|α⟩⟨α| = 1. (2)
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One may try to write one qubit information by using
superposition of states |α⟩ and | − α⟩ in the form

|ψ⟩ = ϵ+|α⟩+ ϵ−| − α⟩ (3)

but this is not satisfactory as states |α⟩ and | − α⟩ do

not form an orthogonal basis and ⟨α| − α⟩ = e−2|α|2 .
The states may be treated orthogonal only for very large
amplitudes α. Orthogonal basis may be obtained by con-
sidering superposed coherent states having even or odd
number of photons defined by

|EVEN, α⟩ = |α⟩+ | − α⟩√
2(1 + x2)

=

∞∑
n=0

√
2x

1 + x2
α2n

√
2n!

|2n⟩, (4)

|ODD, α⟩ = |α⟩ − | − α⟩√
2(1− x2)

=

∞∑
n=0

√
2x

1− x2
α2n+1√
(2n+ 1)!

|2n+ 1⟩, (5)

where x ≡ e−|α|2 . One qubit information may then be
written as

|I⟩ = ϵ+|α⟩+ ϵ−| − α⟩
= A+|EVEN, α⟩+A−|ODD, α⟩, (6)

where

ϵ± =
A+√

2(1 + x2)
± A−√

2(1− x2)

or A± = (ϵ+ ± ϵ−)

√
1± x4

2
. (7)

Normalization condition gives |A+|2 + |A−|2 = |ϵ+|2 +
|ϵ−|2 + x2(ϵ+ϵ− + ϵ−ϵ+) = 1. Coefficients A± define the
angles (θ, ϕ) on the Bloch sphere by A+ = cos θ

2 , A− =

sin θ
2 e

iϕ.
Van Enk and Hirota [3] suggested use of coherent states

for QT. Entangled coherent states are stronger than stan-
dard biphotonic entangled states against possible photon
transfer to reservoir mode [4]. They took the entangled
state of the form

|E⟩1,2 =
1

2
√
1− x4

[|α, α⟩ − | − α,−α⟩], (8)

which is maximally entangled. The familiar BSM of the
usual QT was replaced by photon counting in two modes.
The suggested experimental scheme is shown in FIG. 1.

Explicitly, the scheme shown in FIG. 1, gives the final
state for modes 4, 6 and 2 as

|ψ⟩4,6,2 =
1√

2(1− x4)

×
[
ϵ+(|

√
2α, 0⟩4,6|α⟩2 − |0,−

√
2α⟩4,6| − α⟩2)

+ϵ−(|0,
√
2α⟩4,6|α⟩2 − | −

√
2α, 0⟩4,6| − α⟩2)

]
.

(9)

FIG. 1. Shows the scheme of quantum teleportation. Entan-
gled state contains two modes 1 and 2, one of which (mode
2) goes to Bob directly We let Alice pass her part of the en-
tangled state (mode 1) to pass through a phase shifter P.S.I
which converts state in mode 1 to state in mode 3. Now Al-
ice mixes state 3 with the state to be teleported (mode 0) by
using a 50:50 beam splitter, modifies one of the two outputs
(mode 5) by passing it through a phase-shifter P.S.II which
changes the state 5 to 6, and then performs photon counting
in the two final outputs 4 and 6. This result is then passed
to Bob, which helps him to retrieve the information state by
performing unitary transformation on the state 2.

van Enk and Hirota separated the coherent states |
√
2α⟩

in terms of odd and even coherent states and wrote

| ±
√
2α⟩ =

√
1

2
(1 + x4)|EVEN,

√
2α⟩

±
√

1

2
(1− x4)|ODD,

√
2α⟩, (10)

to obtain

|ψ⟩4,6,2 =
1

2

√
1 + x2

(1− x2)

×
[
|EVEN,

√
2α; 0⟩4,6(ϵ+|α⟩2 − ϵ−| − α⟩2)

+|0; EVEN,
√
2α⟩4,6(−ϵ+| − α⟩2 + ϵ−|α⟩2)

]
+
1

2

[
|ODD,

√
2α; 0⟩4,6(ϵ+|α⟩2 + ϵ−| − α⟩2)

+|0;ODD,
√
2α⟩4,6(−ϵ+| − α⟩2 + ϵ−|α⟩2)

]
.

(11)

This clearly shows that at least one of the count in
mode 4 and 6 is always zero. When count in modes
(4,6) are (ODD,0) respectively, a replica of information is
automatically created at Bob’s end. If count are (0,ODD,
a unitary transformation changing | ± α⟩ → | ∓ α⟩, i.e.,
reversing the phase of coherent state, generates replica
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of information at Bob’s end. For even counts, however,
a replica of |I⟩ may be generated if it was possible to get
|α⟩ → |α⟩, | −α⟩ → −|−α⟩ by a unitary transformation.
Since such a unitary transformation does not exist, van
Enk and Hirota concluded failure in this case and said
that success is 1/2.

In our research group, H. Prakash, N. Chandra, Dr.
Shivani and I [5] reexamined this scheme and modified
the division of photon counting results in two parts,
EVEN and ODD to three parts: ZERO, NONZERO
EVEN (NZE) and ODD. The photon counting results
are then, I: (0,0), II: (NZE,0), III: (0,NZE), IV:
(ODD,0), V: (0,ODD).

Explicitly, separation of |
√
2α⟩ in terms of vacuum

state, nonzero even and odd photon number state is done
by writing

| ±
√
2α⟩ = x|0⟩+

√
1− x2

2
|NZE,

√
2α⟩

±
√

1− x4

2
|ODD,

√
2α⟩, (12)

where

|NZE,
√
2α⟩ = |α⟩+ | − α⟩ − 2

√
x|0⟩√

2(1− x)
, x ≡ e−|α|2 . (13)

When this is done, we get the state of modes 4, 6 and
2 in the form

|ψ⟩4,6,2 =

√
2x

1 + x2
|0⟩4|0⟩6A+|ODD, α⟩2

+
1

2

√
1− x2

1 + x2

{
|NZE,

√
2α⟩4|0⟩6

[
A+

√
1− x2

1 + x2
|ODD, α⟩+A−

√
1 + x2

1− x2
|EVEN, α⟩

]
2

+|0⟩4|NZE,
√
2α⟩6

[
A+

√
1− x2

1 + x2
|ODD, α⟩ −A−

√
1 + x2

1− x2
|EVEN, α⟩

]
2

}
+
1

2

{
|ODD,

√
2α⟩4|0⟩6

[
A+|EVEN, α⟩+A−|ODD, α⟩

]
2
+ |0⟩4|ODD,

√
2α⟩6

[
A+|EVEN, α⟩ −A−|ODD, α⟩

]
2

}
.

Here, the states reaching Bob are seen to depend not al-
ways on the information in a complicated way in some
cases. Fidelity is also seen at turns to depend on infor-
mation state in a complicated way. We defined Minimum
assured fidelity (MASFI, the minimum of fidelity over all
possible information). The conclusions are the same as
those of van Enk and Hirota. If both count are zero,
Bob gets odd coherent state. Thus F = 1 if A+ = 0
and F = 0 if A− = 0. The MASFI is thus 0 and we
conclude a failure. When counts are (NZE,0), in princi-
ple, unitary transformation, U = |EVEN, α⟩⟨ODD, α| +
|ODD, α⟩⟨EVEN, α| gives teleported output of the form

∼ B+|EVEN, α⟩±B−|ODD, α⟩ with B± = A±

√
1∓ x2

1± x2
.

(14)
For counts (0,NZE), one more unitary transformation
which changes the sign of |ODD, α⟩ but not of |EVEN, α⟩,
is required. Since B± ̸= A±, the fidelity F < 1, but
if |α|2 >> 1, B± ≈ A± and F = 1. If the counts are
(ODD,0) no unitary transformation is required and Bob
gets information directly with F = 1. For counts (0,ODD)
however a unitary transformation changing the sign of
ODD coherent states is required for QT with F = 1.

Explicitly the teleported states for the various cases of
photon counts are

|T ⟩I = |ODD, α⟩2
|T ⟩II = |T ⟩III

∼ A+

√
1− x2

1 + x2
|EVEN, α⟩2

+A−

√
1 + x2

1− x2
|ODD, α⟩2,

|T ⟩IV,V = A+|EVEN, α⟩2 +A−|ODD, α⟩2 = |I⟩2.
Here ∼ denotes unnormalized state. The fidelities are

FI = |A−|2

FII = FIII =
1− x2(|A+|2 − |A−|2)

1 + x4 − 2x2(|A+|2 − |A−|2)
FIV = FV = 1.

MASFI is obtained by finding minimum of F against θ
and ϕ and its values are

(MASFI)I = 0,

(MASFI)II,III = 1− x4,

(MASFI)IV,V = 1.

If Pi is probability for occurrence of case i, we define
average fidelity

Fav =
V∑
i=I

PiFi = 1− 2x2

(1 + x2)2
|A+|2[x2|A−|2 + |A+|2].

This has minimum value, which we call Minimum Aver-
age Fidelity (MAVFI), given by

(MAVFI)I = 1− 2x2

(1 + x2)2
=

1 + x4

(1 + x2)2
≈ 1 for x << 1.
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For |α|2 = 1, 2 or 5, MAVFI is seen to be 0.73, 0.9987 and
0.9999 respectively. This leads to, thus, an almost perfect
QT. It may be of interest that use of non-maximally en-
tangled resource may improve the fidelity of QT in some
cases and Prof. Hari Prakash will speak on it in his talk.

In their classical paper, van Enk and Hirota also con-
sidered the problem of decoherence and its effect on QT
fidelity. The authors assumed that the coherent pho-
tons in the initial state |α⟩ leak to the coupled reservoir
vacuum modes and number of photons |α|2 decrease to
η|α|2. η is called noise parameter. If we consider initial
state |α⟩ in mode 0 which is coupled to reservoir mode
R0 in initial vacuum state |0⟩R0, the authors assumption
is equivalent to assuming

|α⟩0|0⟩R0 → |ηα⟩0|k⟩R0 = |α̃⟩0|k⟩R0, k =
√
1− ηα.

This was also generalized to multimode reservoir vacuum
modes coupled to the signal mode. Thus,

|α⟩0
∏
i

|0⟩R0i → |ηα⟩0
∏
i

|k⟩R0i,
∑
i

|ki|2 = (1− η)|α|2.

The information state |I⟩0 coupled with reservoir mode
R0 which is initially in vacuum |0⟩R0 therefore undergoes
change

|I⟩0|0⟩R0 → |Ĩ⟩0,R0 ≡ ϵ+|α̃⟩0|k⟩R0 + ϵ−| − α̃⟩0| − k⟩R0.

Similarly entangled state |E⟩1,2 of modes 1 and 2 coupled
to reservoir modes R1 and R2 in initial state |0⟩R1 and
|0⟩R2 change to

→ [|α̃⟩1|α̃⟩2|k⟩R1|k⟩R2]− | − α̃⟩1| − α̃⟩2| − k⟩R1| − k⟩R2]√
2(1− x4)

Calculation in the well known way then lead to state of
Bobs mode entangled with modes R0, R1 and R2 [6].
Fidelity can be obtained by using Tr[|I⟩⟨I|ρ̃T ] where ρT
is the density operator describing modes 0, 1, 2, R0, R1
and R2.

It may be noted that these results are not identical
with the results of van Enk and Hirota as these authors
obtained fidelity using Tr[|Ĩ⟩⟨Ĩ|ρ̃T ]. We felt that since
initial given information is |I⟩, we must compare the final
state with |I⟩⟨I| and find F = Tr[|I⟩⟨I|ρ̃T ]. .

We may now discuss in brief the results in presence of
decoherence. For the (zero, zero) counts case, MASFI is
zero only for θ = 0, (i.e., for A+ = 1 or |I⟩ = |EVEN⟩)
and for η = 1, the noiseless case. For the case with noise,
however, MASFI is nonzero in geneal. For count zero
and NZE, F is a function of η and θ. For η = 1, the
noiseless F is min at θ = π/2. For 1 > η > 0.965, F
is min at θ with 0 < θ < π/2. For η < 0.965, F is
min at θ = 0 and MASFI is therefore F at θ = 0. Its
variation against |α|2 is plotted in FIG. 2. For one of
counts ODD, for low noise η > 0.721, MASFI decreses
with |α|2. For η < 0.721, MASFI first increases with |α|2
and then falls as |α|2 is very large. For one count zero

FIG. 2. Variation of MASFI against |α|2 for one of counts
NZE.

FIG. 3. Variation of MASFI against |α|2 for one of counts
ODD.

and the other odd, F is seen to be min at θ = π and the
MASFI has variation shown in FIG. 3. For η > 0.738,
MASFI decreases with increase in |α|2. For η < 0.738,
MASFI first increases and then decreases with increase
in |α|2. Also it is seen that dependence of F on θ ceases
for |α|2 greater than a certain value. For η = 0.9, this
behavior is shown in FIG. 4.
Wang [7] considered a similar problem involving infor-

mation and entangled states |I⟩ = ϵ+|α, α⟩+ϵ−|−α,−α⟩
and (2(1−x8))−1/2[|

√
2α, α, α⟩−|−

√
2α,−α,−α⟩]. Wang

followed the van Enk-Hirota scheme and reported success
1/2. We modified [9] this scheme also and got fidelity
very close to 1. If we write information as

|I⟩ = ϵ+|α, α⟩+ ϵ−| − α,−α⟩
= A+|EVEN;α, α⟩+A−|ODD;α, α⟩, (15)
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FIG. 4. Variation of average fidelity with |α|2 for some value
of θ for η = 0.9.

where

|EVEN;α, α⟩ = 1√
2(1 + x4)

[|α, α⟩+ | − α,−α⟩],

|ODD;α, α⟩ = 1√
2(1− x4)

[|α, α⟩ − | − α,−α⟩],

and coefficients ϵ± and A± are inter-related. The exper-
imental set up is shown in FIG. 5.

Photon counting is done in the modes 11 and 12 and
one of the counts is always zero. The possible cases of
counts are I: (zero, zero), II: (nonzero even, zero), III:
(zero, nonzero-even), IV: (odd, zero) and V: (zero, odd).
The unitary transformations are seen to be

UI = UIV = 1,

UII,III = |EVEN;α, α⟩⟨ODD;α, α|
±|ODD;α, α⟩⟨EVEN;α, α|,

UV = |EVEN;α, α⟩⟨EVEN;α, α|
−|ODD;α, α⟩⟨ODD;α, α|.

Giving the teleported states

|T ⟩I = |ODD;α, α⟩,

|T ⟩II = |T ⟩III ∼ A+

√
1− x4

1 + x4
|EVEN;α, α⟩

+A−

√
1 + x4

1− x4
|ODD;α, α⟩,

|T ⟩IV = |T ⟩V = |I⟩,

and the fidelities

FI = |A−|2, FIV = FV = 1,

FII = FIII = 1− 1− x4(|A+|2 − |A−|2)
1 + x8 − 2x4(|A+|2 − |A−|2)

.

FIG. 5. Numerals 1, 2, ..., 6 refers to modes. Entangled states
of modes 1 and 2 are to be teleported to bob. Out of , state in
mode 3 goes to Alice while states in modes 4 and 5 go to Bob.
Alice (i) converts state 2 to state 6 by using phase shifter PS-
I, (ii) mixes state 6 with state 1 using a beam splitter BS-I,
(iii) modifies output in 7 to state 9 using phase shifter PS-II,
(iv) mixes state 9 with state 3 using beam splitter BS-II (v)
modifies output in 10 to state 12 using phase shifter PS-III,
and (vi) performs photon counting in mode 11 and 12. The
results of photon counting, conveyed to Bob by a classical
channel helps him construct the entangled state by making
unitary transformation on state of mode 4 and 5

This leads to average fidelity

Fav = 1− 2x4|A+|2(x4|A−|2 + |A+|2)
(1 + x4)2

.

Minimum of this is the Minimum Average Fidelity
(MAVFI),

MAVFI = 1− 2x4

(1 + x4)2
for A− = 0.

To estimate, we see that for |α|2 ≈ 2,MAVFI = 1−0.98×
10−4. The QST is thus almost perfect.
We considered the effect of decoherence also [8] and

obtained recently similar to those discussed in previous
case. The MASFI is zero only if η = 1 and inforamtion is
even coherent state. For low noise MASFI decreases with
increase in |α|2 but at higher noise, it first increases and
then decreases on increasing |α|2. The average fidelity is
independent of information for appreciable |α|2.
We also consider [9] controlled QT using 4-partite

states involving, in addition to sender Alice and receiver
Bob, two extra players Clair and David. As a matter of
fact, we re-examined work of N. B. Ann [10] who reported
success 1/4 in limit α → ∞. We found almost perfect
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FIG. 6. Controlled quantum teleportation using four-particle
state.

success for appreciable |α|. The experimental procedure
is as explained in FIG. 6. Llight beam of mode 1 falls on
phase shifter I which changes state |α⟩ to |iα⟩ and this
beam and light beam of information mode are incident on
a symmetric beam splitter. One output passes through
a phase shifter II which changes state |α⟩ to |iα⟩.

Photon counting is done in the other output (mode 6)
and the phase shifted output (mode 8). Clair and David
also count photons in their modes 3 and 4. The photon
counts in modes 6 and 8 and sum of these two counts in

modes 3 and 4 decide the unitary transformation which
is done by Bob.

Proceeding exactly in the same as explained earlier, the
minimim average fidelity is seen to be 1− [2x2/(1+x2)2].
For |α| = 5, this is 0.9999. We considered the effect of
decoherence also [11]. Conclusions similar to those in
previous two cases are obtained.

We now study entanglement diversion between two
pairs of entangled coherent sates. This problem involves
three remote parties Alice, Bob and Clair. Alice and
Bob are connected to each other by sharing an entangled
state |ϕ⟩1,3 of mode 1 with Alice and mode 3 with Bob.
Similarly Alice and Clair are connected to each other by
sharing an entangled state |ψ⟩2,4 of mode 2 with Alice
and mode 4 with Clair. Connected persons can do QT
between them. But as Bob’s mode 3 is not entangled
with Clair’s mode 4, no QT is possible between Bob and
Clair. Xin-Hua [12] gave a scheme for entanglement di-
version which makes Bob’s and Clair’s mode entangled.
Xin-Hua reported success of 1/2. We modify this scheme
and obtain near perfect entanglement diversion [13].

Photon counting is done in (see FIG. 7) modes 6 and 8
and if |ϕ⟩1,3 and |ψ⟩2,4 both and (2(1− x4))−1/2[|α, α⟩−
|−α,−α⟩] the state of modes 6, 8, 3 and 4 is seen to be,
i.e., |ψ⟩6,8,3,4 is equal to

1

2(1− x4)

[{
x|0⟩6|0⟩8(|α⟩ − | − α⟩)3(|α⟩ − | − α⟩)4

}
+
1− x2√

2

{
|NZE,

√
2α⟩6|0⟩8(|α, α⟩+ | − α,−α⟩)3,4 − |0⟩6|NZE,

√
2α⟩8(|α,−α⟩+ | − α, α⟩)3,4

}
+

√
1− x4

2

{
|ODD,

√
2α⟩6|0⟩8(|α, α⟩ − | − α,−α⟩)3,4 − |0⟩6|ODD,

√
2α⟩8(|α,−α⟩ − | − α, α⟩)3,4

}]
.

If Alice performs photon counting on her modes 6 and 8
and conveys result to either of Bob and Clair, the receiver
can perform a unitary transformation and try to make
the modes 3 and 4 perfectly entangled.

Alice’s results of photon counts in modes 6 and 8 can
be I: (0,0), II: (NZE,0), III: (0,NZE), IV: (ODD,0), V:
(0,ODD). For case I entanglement is zero and F = 0. But,
probability PI for occurrence of this case is x2/(1+x2)2,
and its plot is shown in above of the FIG. 8. It can be
seen that PI ≈ 0 for |α|2 = 3. Plots of PII,III and the

fidelity are shown in FIG. 9.
For cases IV and V the probability of occurrence is 1/4

and the Fidelity is 1. Variation of average fidelity with
|α|2 is shown in right of the FIG. 9.
We studied the effect of decoherence on this scheme

of entanglement diversion also [14]. Variation of Fidelity
with |α|2 for various values of η for cases (II, III) and
(IV, V) are shown in the FIG. 10.
We studied a similar phenomenon of swapping between

two pairs of non-orthogonal entangled coherent states
[15] and the effect of noise on it [16].
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FIG. 9. Variation of PII = PIII and of fidelity with |α|2 and for cases IV & V variation of Average Fideltiy with |α|2.

FIG. 10. Variation of Fidelities for cases II & III and for cases of IV & V with |α|2 for various values of η.
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