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In entanglement-assisted classical communication, to study influence of noise in quantum channel
is important. Entangled states by nonorthogonal states called “quasi-Bell states”, such as coherent
states of light, have been shown to be capable of “perfect entanglement” and are expected to be
robust against attenuation in quantum channel. Recently, a property of a capacity of a quantum
channel assisted by a degraded quasi-Bell state was shown by using an approximately executable
encoding. In the present paper, we consider strictly executable encodings and show the optimum
encoding and properties of capacity.

I. INTRODUCTION

Entanglement is known as an important resource in
quantum information systems. In application, it is de-
sirable to use complete entanglement or a maximally en-
tangled state. Entangled states by nonorthogonal states
called “quasi-Bell states [1]”, such as coherent states of
light, have been shown to be capable of “perfect entan-
glement” and are expected to be robust against atten-
uation in quantum channel. Since then, the quasi-Bell
states have been received much attention and a lot of
papers have been published (e.g. [3–7]). We consider
an application of quasi-Bell states to the entanglement-
assisted classical communication [8], which is one of two
major application protocols of entanglement as quantum
teleportation. An entanglement-assisted classical com-
munication or a quantum superdense coding is a protocol
of classical information transmission using entanglement,
that was proposed by Bennett and Wiesner [8].

A classical information transmission assisted by a
quasi-Bell state was considered by Hirota et al. [9]. In
[9], they assumed an ideal channel and remarked that
an investigation of an effect of loss is desired. Re-
cently, we considered two kinds of effects of loss on
the entanglement-assisted classical communication by a
quasi-Bell state [10, 11]. One correspoonds that a quasi-
Bell state is attenuated in its sharing process (before per-
forming the protocol) and the other corresponds that a
lossy channel is used in the entanglement-assisted clas-
sical communication protocol. However, as explained in
Section 4.2 in [11], an approximate encoding was assumed
in all these papers. The approximation works when am-
plitude of coherent states are sufficiently large.

In the present paper, we use rigorously realizable
encodings by introducing an orthonormal basis in the
Hilbert space spanned by the coherent-states which are
components of the quasi-Bell state. Then we show prop-
erties of an entanglement-assisted classical capacity.

II. QUASI-BELL STATES

Quasi-Bell states are entangled qubit states based on
a nonorthogonal computational basis [1]. In general,

arbitrary two (nonorthogonal) pure-states generate four
quasi-Bell states. In contrast, four Bell states are gener-
ated by two orthogonal pure-states. Since the dimension
of the space spanned by the two nonorthogonal states
is d = 2, the degree of entanglement of the quasi-Bell
states is at most log2 d = log2 2 = 1[ebit]. It was shown
that the degree of entanglement of two of the four quasi-
Bell states attains the upper limit 1[ebit] and was said
that the two of the four quasi-Bell states have “perfect
entanglement [1]”.
Using coherent states of light as nonorthogonal states,

they are called entangled coherent states [3, 12] which is
attractive as the third type of entangled states (cf. Bell
states and two-mode squeezed states). In the present
paper, we consider entangled coherent states.
A coherent state whose complex amplitude is α is ex-

pressed as |α〉. Let |0L〉 = |0〉 and |1L〉 = |α〉 be the
(nonorthogonal) logical qubit states. Then quasi-Bell
states by coherent-states are expressed as

|Ψ1〉AB = h1(|0〉A|β〉B + |α〉A|0〉B), (1)

|Ψ2〉AB = h2(|0〉A|β〉B − |α〉A|0〉B), (2)

|Ψ3〉AB = h3(|0〉A|0〉B + |α〉A|β〉B), (3)

|Ψ4〉AB = h4(|0〉A|0〉B − |α〉A|β〉B), (4)

where

h1 = h3 = 1/
√
2(1 + κAκB),

h2 = h4 = 1/
√
2(1− κAκB),

κA = 〈0|α〉 = 〈α|0〉 = exp(−2|α|2),
κB = 〈0|β〉 = 〈β|0〉 = exp(−2|β|2),

and α and β are assumed to be non-negative real num-
bers. When α = β, it was shown that |Ψ2〉 and |Ψ4〉 have
perfect entanglement.

III. QUANTUM SUPERDENSE CODING

It had been shown that the use of entanglement en-
hances classical communications [8]. The protocol is
called a quantum superdense coding or an entanglement-
assisted classical communication. As an example, in a
qubit system, maximum bits obtained at the receiver
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FIG. 1. Schematic diagram of a classical communication as-
sisted by an entangled state.

without initial shared entanglement is only 1[bit] by
transmitting 1-qubit, whereas 2[bits] can be obtained by
entanglement assistance. The quantum superdense cod-
ing consists of the following steps:

1. Alice (sender) and Bob (receiver) share an entan-
gled state ρ̂(A⊗B) beforehand.

2. Alice encodes a classical signal i by applying an

encoding function E(A)
i to her side of ρ̂(A⊗B).

3. Bob obtains the states ˆ̄ρ
(A⊗B)
i by receiving Alice’s

part of ρ̂
(A⊗B)
i through a quantum channel Φ.

4. Performing the quantum combined measurement
on Bob’s side, he obtains a classical signal j.

A. Encoding

An encoding function E(A)
i is local operation for the

mode A of ρ̂(A⊗B) corresponding to a classical signal i.
Since the mode B is unchanged in the encoding process,
the local operation for the mode B is the identity operator
I(B). Thus, the encoding is represented as follows:

ρ̂
(A⊗B)
i =

[
E(A)
i ⊗ I(B)

]
ρ̂(A⊗B)

[
E(A)
i ⊗ I(B)

]†
. (5)

B. Classical capacity assisted by entanglement

For a quantum channel Φ, the capacity (Holevo capac-

ity) of fixed an encoding function E(A)
i and an entangled

state ρ̂(A⊗B) is

C(1)
ea (E(A)

i , ρ̂(A⊗B),Φ)

= max
{ξi}

{
S
(∑

i

ξi ˆ̄ρ
(A⊗B)
i

)−∑
i

ξiS
(
ˆ̄ρ
(A⊗B)
i

)}
, (6)

where S(ρ) = −Trρ log ρ and {ξi} is an a priori distri-
bution assigned to classical signals {i}. Note that the

capacity C
(1)
ea (Φ) is defined as the maximum value of the

capacity (6) with respect to shared entangled states and

encodings. In the same way, the capacity C
(n)
ea (Φ) is de-

fined for the channel Φ⊗n and the limit

Cea = lim
n→∞

1

n
C(n)

ea (Φ), (7)

is so called the entanglement-assisted classical capacity
[13, 14]. In the present paper, however, we compute the
one-shot capacity (6) when a quasi-Bell state is shared.

IV. ATTENUATION ON QUASI-BELL STATES

A. Attenuation in sharing process

Alice prepares the following entangled state:

|Ψ4〉 = h4(|0〉A|0〉B − |α〉A|β〉B). (8)

We assume that the mode B of the |Ψ4〉 is attenuated
when Alice and Bob share the entangled state. Degrada-
tion of entanglement by an attenuated quantum channel
can be represented as an interaction between the mode B
and an external vacuum mode or an environment mode
E. Let ηB be the transmissivity (0 ≤ ηB ≤ 1) of the at-
tenuated channel. The interaction of the mode B and the
external mode E is represented as

UBE|β〉B|0〉E = |√ηBβ〉B|
√
1− ηBβ〉E. (9)

Thus the output state for the compound system of A, B,
and E is

|Ψ4〉ABE = (IA ⊗ UBE)(|Ψ4〉AB ⊗ |0〉E)
= h̃4

(|0〉A|0〉B|0〉E − |α〉A|√ηBβ〉B|
√
1− ηBβ〉E

)
, (10)

where

h̃4 =
1√

2(1− LBκAκ′
B)

, (11)

κA = 〈0|α〉, (12)

κ′
B = 〈0|√ηBβ〉, (13)

LB = 〈0|
√
1− ηBβ〉. (14)

As a result, the density operator ρ̂(A⊗B) for mode A and
B after attenuation is

ρ̂(A⊗B) = TrE(|Ψ4〉ABE〈Ψ4|)
= (h̃4)

2
{
|0〉A|0〉B〈0|A〈0|+ |α〉A|√ηBβ〉B〈√ηBβ|A〈α|

−LB

(|0〉A|0〉B〈√ηBβ|A〈α|+ |α〉A|√ηBβ〉B〈0|A〈0|
)}

. (15)

B. Encoding

In this study, we consider rigorously realizable encod-
ings. Here, we mean by a rigorously realizable encoding
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that the encoding is unitary. For this purpose, we intro-
duce an orthonormal basis {|ω0〉A, |ω1〉A} and consider
the matrix representation of a quasi-Bell state by the ba-
sis. How to select the basis ? The first condition is that
the logical qubit states |0L〉A = |0〉A and |1L〉A = |α〉A
tend to the basis vectors |ω0〉A and |ω1〉A in the limit of
infinite amplitude:

|0〉A → |ω0〉A, |α〉A → |ω1〉A (α→∞) (16)

The second condition is the basis is sufficiently close to
the logical qubits. As a result, the measurement states
of the square-root measurement (SRM) [15] for binary
quantum signals {|0〉A, |α〉A} is suitable as the basis. The
SRM is well known as an optimum or asymptotically op-
timum measurement for quantum signals (e.g. [15–19]).
Moreover, for pure-state signals, it is often called the least
square measurement (LSM) since the minimum distance
between the signals and the measurement states is at-
tained by the SRM [19]. Therefore, {|ω0〉A, |ω1〉A} are
the measurement states of the optimum quantum mea-
surement for the signals {|0〉A, |α〉A} and are represented
as [20, 21]

|ω0〉A =
√
εA+|0〉A −√εA−|α〉A, (17)

|ω1〉A =
√
εA−|0〉A −√εA+|α〉A, (18)

where

εA± =
1±√

1− κ2
A

2(1− κ2
A)

. (19)

We can describe |0〉A and |α〉A by using |ω0〉A and |ω1〉A
as

|0〉A =
1

εA+ − εA−
(
√
εA+|ω0〉A −√εA−|ω1〉A)

=
1

εA+ − εA−

[ √
εA+

−√εA−

]
, (20)

|α〉A =
1

εA+ − εA−
(
√
εA−|ω0〉A −√εA+|ω1〉A)

=
1

εA+ − εA−

[ √
εA−

−√εA+

]
. (21)

Similarly, we can describe qubit states for the mode B.
Since we give a matrix representation of the quisi-Bell

state, it is sufficient to represent encodings by unitary
matrices. We consider the following unitary matrices

which correspond to the local operation E(A)
i for the mode

A.

U
(i)
A = R̃(θ(i)) =

{
R1(θ

(i)) (0 ≤ θ(i) < 2π),
R2(θ

(i)) (2π ≤ θ(i) < 4π),
(22)

where

R1(θ
(i)) =

[
cos(θ(i)) − sin(θ(i))
sin(θ(i)) cos(θ(i))

]
, (23)

R2(θ
(i)) =

[
cos(θ(i)) sin(θ(i))
sin(θ(i)) − cos(θ(i))

]
, (24)

and IB is the identity map for the Bob’s system

IB =

[
1 0
0 1

]
. (25)

C. Attenuation when the protocol is performed

We consider the second loss which corresponds to an
attenuation when the protocol is performed. In per-

forming the protocol, Alice transmits her side of ρ̂
(A⊗B)
i

through an attenuated quantum channel whose transmis-
sivity is ηA(0 ≤ ηA ≤ 1). Mathematical treatment of the
attenuation is the same as that described in Section IV.A.

V. EFFECT OF LOSS ON A QUASI-BELL
STATE

A. Determining encoding

Before considering property of capacity, we determine
the fixed encoding function. We use the optimum en-
coding when the a priori probability distribution is uni-
form. We numerically derive the optimum encoding
that maximizes the Holevo information. As a result,
the encoding maximizes the Holevo information when
θ(1) = 0, θ(2) = π

2 , θ
(3) = 2π, θ(4) = 5

2π. This means the
unitary matrices corresponding to the optimum encoding
are

U
(1)
A =

[
1 0
0 1

]
= I, (26)

U
(2)
A =

[
0 −1
1 0

]
= Y, (27)

U
(3)
A =

[
1 0
0 −1

]
= Z, (28)

U
(4)
A =

[
0 1
1 0

]
= X. (29)

Here, I,X, Y , and Z are the identity, the bit flipping,
the bit phase flipping, and the phase flipping operators,
respectively. Thus, we find that the well known I,X,Z,
and Y correspond to the optimum encoding if we use the
orthonormal basis {|ω0〉A, |ω0〉B} for the matrix represen-
tation.
Using the above encoding, we compute the capacity.

Here, maximization with respect to an a priori distribu-
tion {ξi} is performed numerically. It turns out that the
capacity is attained by the uniform distribution.

B. Property of capacity

In this section, we consider property of the
entanglement-assisted classical capacity through an at-
tenuated quantum channel when a quasi-Bell state which
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FIG. 2. Classical capacities assisted by quasi-Bell states with
respect to the transmissivity ηA = ηB = η of the attenuated
quantum channel. The black dashed line, the red solid line,
the blue solid line, and the green solid line correspond to the
cases that coherent amplitudes are α = β = 0.5, 1.0, 2.0, and
3.0, respectively.

is already attenuated in its sharing process is used as
shared initial entanglement. That is, both losses ex-
ist. Here, we assume ηA = ηB = η. Figure 2 shows
the classical capacities assisted by quasi-Bell states with
respect to the transmissivity ηA = ηB = η of the at-
tenuated quantum channel, where the black dashed line,
the red solid line, the blue solid line, and the green solid
line correspond to the cases that coherent amplitudes are
α = β = 0.5, 1.0, 2.0, and 3.0, respectively. From Fig.2,
capacities are monotonically increasing with respect to
the transmissivity. In contrast, in the previous results
in which approximate encoding are used, capacities be-
come large when the transmissivity is very small. Owing
to using the rigorously realizable encodings, we obtain
an reasonable result for all range of the transmissivity.
The capacities are smaller than 1 when η < 0.7 because
of double attenuations. In this region, the effect of en-
tanglement vanishes and larger amplitude provides larger
capacity. On the other hand, when η > 0.7, the capacity
exceeds the entanglement-unassisted limit (=1[bit]) and
smaller amplitude provides larger capacity because of en-
tanglement is more robust in weaker amplitude. Next,
we consider the optimum amplitude maximizing the ca-
pacity. Figures 3 and 4 show the optimum amplitudes α
and β with respect to the transmissivity η, respectively.
The optimum values are almost identical for both ampli-
tudes α and β. Note that |Ψ4〉 has perfect entanglement
when α = β. When the transmissivity is small, the op-
timum amplitudes are very large since larger amplitudes
provide larger capacity if there is no entanglement assis-
tance. When the transmissivity is large, the optimum
amplitudes are very small since smaller amplitudes pro-
vide larger capacity if there is entanglement assistance.

Figure 5 shows classical capacities assisted by quasi-
Bell states with respect to the transmissivity ηA = ηB =
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FIG. 3. Optimized coherent amplitude α with respect to the
transmissivity ηA = ηB = η of the attenuated quantum chan-
nel.
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FIG. 4. Optimized coherent amplitude β with respect to the
transmissivity ηA = ηB = η of the attenuated quantum chan-
nel.

η of the attenuated quantum channel when coherent am-
plitudes are optimized. From Fig.5, the threshold value
of η, that divides entanglement assistance and unassis-
tance, is about 0.7, which is different from the case of
single loss.

VI. CONCLUSION

We have considered the entanglement-assisted clas-
sical communication through an attenuated quantum
channel when an attenuated quasi-Bell state is used as
shared initial entanglement. We introduce an orthonor-
mal basis and consider rigorously realizable encodings
and show properties of entanglement-assisted classical
capacity. We find that I,X,Z, and Y correspond to
the optimum encoding for an equiprobable classical infor-
mation when the measurement states of the square-root
measurement for the logical qubit states are used as the
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FIG. 5. Classical capacities assisted by quasi-Bell states with
respect to the transmissivity ηA = ηB = η of the attenuated
quantum channel when coherent amplitudes are optimized.

orthonormal basis. Using the encoding, it turns out that
the capacity is attained by a uniform distribution. Un-
like the previous result in which an approximate encoding
was used, the capacity is monotonically increasing with
respect to channel transimissivity. And the threshold
value of transimissivity, that divides entanglement assis-
tance and unassistance is about 0.7 for the case of double
attenuation, whereas it is 0.5 for single attenuation. In
entanglement assistance region, smaller amplitude pro-
vides larger capacity. This corresponds that weaker am-
plitude is more robust against the loss.

In the present paper, we used a maximally entangled
coherent state |Ψ4〉. Recently, it was shown that there is
a case that quantum teleportation using a non-maximally
entangled coherent state is superior to that using a max-
imally entangled coherent state [22]. We will consider
the entanglement-assisted classical communication using
non-maximally entangled coherent states |Ψ1〉 or |Ψ3〉.
This work has been supported in part by JSPS KAK-
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